

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release. Distribution is unlimited.

EXECUTABLE BEHAVIORAL MODELING OF
SYSTEM- AND SOFTWARE-ARCHITECTURE
SPECIFICATIONS TO INFORM RESOURCING

DECISIONS

by

Monica F. Farah-Stapleton

September 2016

Dissertation Supervisor: Mikhail Auguston

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2016

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE
EXECUTABLE BEHAVIORAL MODELING OF SYSTEM- AND
SOFTWARE-ARCHITECTURE SPECIFICATIONS TO INFORM
RESOURCING DECISIONS

5. FUNDING NUMBERS

6. AUTHOR(S) Monica F. Farah-Stapleton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The size, cost, and slow rate of change of Department of Defense (DOD) Information Technology
(IT) systems make introducing new capabilities challenging. Without considering the whole system and its
environment, design decisions may result in unintended operational and financial impacts, often not visible
until later testing. These complex systems and their interactions are not cheap to maintain, impacting
intellectual, programmatic, and organizational resources. Precise behavioral modeling offers a way to
assess architectural design decisions prior to, during, and after implementation to mitigate the impacts of
complexity, but this modeling cannot estimate those design decisions’ effort and cost. This research
introduces a methodology to extract Unadjusted Function Point (UFP) counts from architectural behavioral
models utilizing a framework called Monterey Phoenix (MP), lightweight formal methods, and high-level
pseudocode for use in cost estimation models such as COCOMO II. Additionally, integration test estimates
are informed by extracts of MP model event traces. These unambiguous, executable architecture models
and their views can be inspected and revised in order to facilitate communication with stakeholders, reduce
the potential for software failure, and lower implementation costs.

14. SUBJECT TERMS
architecture, behavioral modeling, cost estimates, unadjusted function point, test cases, views

15. NUMBER OF
PAGES

237
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

EXECUTABLE BEHAVIORAL MODELING OF SYSTEM- AND SOFTWARE-
ARCHITECTURE SPECIFICATIONS TO INFORM RESOURCING DECISIONS

Monica F. Farah-Stapleton

B.S.E.E., Rutgers University, 1985
ExMSE, University of Pennsylvania, 1996

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2016

Approved by: Mikhail Auguston

Associate Professor, Department of Computer Science, NPS
Dissertation Supervisor and Committee Chair

Clifford Whitcomb
Professor, Department of Systems Engineering, NPS

Donald P. Brutzman
Associate Professor, Department of Information Science, NPS

Kristin Giammarco
Associate Professor, Department of Systems Engineering, NPS

Raju Namburu
Associate Director Computational and Information Sciences Directorate,
U.S. Army Research Laboratory

Approved by: Peter Denning, Chair, Department of Computer Science

Approved by: Douglas Moses, Vice Provost of Academic Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The size, cost, and slow rate of change of Department of Defense (DOD)

Information Technology (IT) systems make introducing new capabilities challenging.

Without considering the whole system and its environment, design decisions may result in

unintended operational and financial impacts, often not visible until later testing. These

complex systems and their interactions are not cheap to maintain, impacting intellectual,

programmatic, and organizational resources. Precise behavioral modeling offers a way to

assess architectural design decisions prior to, during, and after implementation to mitigate

the impacts of complexity, but this modeling cannot estimate those design decisions’

effort and cost. This research introduces a methodology to extract Unadjusted Function

Point (UFP) counts from architectural behavioral models utilizing a framework called

Monterey Phoenix (MP), lightweight formal methods, and high-level pseudocode for use

in cost estimation models such as COCOMO II. Additionally, integration test estimates

are informed by extracts of MP model event traces. These unambiguous, executable

architecture models and their views can be inspected and revised in order to facilitate

communication with stakeholders, reduce the potential for software failure, and lower

implementation costs.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. OVERVIEW ...1
A. RESEARCH GOAL ..2
B. SIGNIFICANCE OF THE PROBLEM AND ITS POTENTIAL

IMPACT ...3
C. SPECIFIC GOALS OF THIS RESEARCH..3
D. PROPOSED ADVANCES TO THE STATE OF THE ART6

II. RELATED WORK ..7
A. SOFTWARE COST ESTIMATION ..8
B. FUNCTION POINT COUNTING PROCESS14
C. ARCHITECTURE AND ARCHITECTURE MODELING22
D. THE ROLE OF FORMAL METHODS, SEMI-FORMAL

METHODS AND LIGHTWEIGHT FORMAL METHODS IN
ARCHITECTURE MODELING ...31

E. MONTEREY PHOENIX (MP) ..34
F. ESTIMATES FOR INTEGRATION TESTING39

III. METHODOLOGY ..43

IV. IMPLEMENTATION OF METHODOLOGY (EXAMPLES)67
A. SPELL CHECKER EXAMPLE ...68
B. COURSE MARKS EXAMPLE ..82
C. IT’S TEE TIME EXAMPLE ..96

V. SUMMARY OF RESULTS AND FINDINGS ..135
A. RESULTS AND FINDINGS ...135
B. CONCLUSIONS ..137
C. FUTURE WORK ...138

APPENDIX A. MP SCHEMA FOR SPELL CHECKER ...141

APPENDIX B. MP SCHEMA FOR COURSE MARKS ..145

APPENDIX C. MP SCHEMA FOR IT’S TEE TIME COAS 1–4149
A. MP SCHEMA FOR COURSE OF ACTION 1149
B. MP SCHEMA FOR COURSE OF ACTION 2155
C. MP SCHEMA FOR COURSE OF ACTION 3161
D. MP SCHEMA FOR COURSE OF ACTION 4184

LIST OF REFERENCES ..211

INITIAL DISTRIBUTION LIST ...219

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Functionality as Viewed from the User’s Perspective. Adapted from
[21]. ..17

Figure 2. The Anatomy of the Event Grammar Rule. Adapted from [48].36

Figure 3. The ThreeMetrics Methodology Overview ...43

Figure 4. ThreeMetrics Box and Arrow Simplified View ...47

Figure 5. Tee Time Generic Box and Arrow View. Adapted from [56].48

Figure 6. Golf Courses List Screen. Adapted from [56]. ..49

Figure 7. MP Schema Description for EQ State Drop Down Example52

Figure 8. MP Schema For Data Function: SHARE ALL ..53

Figure 9. MP Schema For Data Function: COORDINATE53

Figure 10. MP Event Trace ...56

Figure 11. Nominal Effort Options Selected, Maintenance Off62

Figure 12. Nominal Options Selected, Maintenance Off, Results63

Figure 13. Event Trace View: Sequence Diagram ..65

Figure 14. Integrated View of Manual and MP Schema UFP Count Calculation66

Figure 15. Spell Checker Example. Adapted from [69]. ...69

Figure 16. ThreeMetrics Box and Arrow View: Spell Checker70

Figure 17. Firebird Spell Checker Event Trace 1 of 3215 ..73

Figure 18. Firebird Spell Checker Event Trace 1612 of 321574

Figure 19. Firebird Spell Checker Event Trace 2311 of 321575

Figure 20. Nominal Effort Options Selected, Maintenance Off80

Figure 21. Nominal Effort Options Selected, Maintenance Off, Results81

Figure 22. ThreeMetrics Box and Arrow View: Course Marks84

 x

Figure 23. Firebird Course Marks Event Trace 2 of 4 ..88

Figure 24. Firebird Course Marks Event Trace 3 of 4 ..89

Figure 25. Firebird Course Marks Event Trace 4 of 4 ..90

Figure 26. Nominal Effort Options Selected, Maintenance Off94

Figure 27. Nominal Effort Options Selected, Maintenance Off, Results95

Figure 28. It’s Tee Time Screen. Adapted from [56]. ...98

Figure 29. Tee Time Main Menu Screen. Adapted from [56].99

Figure 30. Golf Course List. Adapted from [56]. ..100

Figure 31. Golf Course Detail. Adapted from [56]. ..101

Figure 32. Tee Time Reservation Screen. Adapted from [56].102

Figure 33. Maintain Golf Courses Screen. Adapted from [56].103

Figure 34. Scoreboard Screen. Adapted from [56]. ..104

Figure 35. Tee Time Shopping. Adapted from [56]. ...105

Figure 36. Tee Time Merchandise Example Screen: Mug. Adapted from [56].106

Figure 37. Database Layout: Internal Logical Files. Adapted from [56].107

Figure 38. Database Layout: External Internal Interface Files. Adapted from
[56]. ..107

Figure 39. ThreeMetrics Box and Arrow View: Tee Time108

Figure 40. Event Trace #1 of 864 ..121

Figure 41. Event Trace #400 of 864 ..122

Figure 42. Event Trace #864 of 864 ..123

Figure 43. Nominal Effort Options Selected for COA 1, Maintenance Off131

Figure 44. Nominal Effort Options for COA 1, Maintenance Off, Results132

 xi

LIST OF TABLES

Table 1. Estimation Method Comparison. Adapted from [11, p. 226].11

Table 2. UFP to SLOC Conversion Ratios. Adapted from [12].13

Table 3. Functional Complexity and Size for EIs. Adapted from [9, Sec. 1, p.
19 Table 6 and 8]. ..19

Table 4. Functional Complexity and Size for EQs. Adapted from [9, Sec.1, p.
19, Table 7 and Table 8]. ...19

Table 5. Functional Complexity and Size for EOs. Adapted from [9, Sec.1, p.
19, Table 7 and Table 8]. ...19

Table 6. Functional Complexity for ILF and EIF. Adapted from [9, Sec.1, p.
13 Table 1]. ..20

Table 7. Functional Size for Data Functions. Adapted from [9, Sec. 1, p. 13,
Table 2]. ...20

Table 8. Architecture: A Bridge between Requirements and High-Level
Design. ...30

Table 9. Monterey Phoenix Event Patterns. Adapted from [48].36

Table 10. UFP Count for EQ State Drop Down ..50

Table 11. Functional Size for Data Functions. Adapted from [9, Sec. 1, p. 13,
Table 2]. ...57

Table 12. Functional Complexity For ILF and EIF. Adapted from [9, Sec. 1 p.
13 Table 1]. ..58

Table 13. Functional Complexity and Size for EQs. Adapted from [9, Sec.1, p.
19, Table 7 and Table 8]. ...59

Table 14. Nominal Option Estimates ...62

Table 15. Nominal Effort Estimates ..80

Table 16. UFP Calculation. Adapted from Terms from Solutions and Function
Point Complexity Weights [69, p. 547]. ..83

Table 17. Nominal Effort Estimates ..94

 xii

Table 18. EQ COORDINATEs Extracted From MP Schema for COA 3127

Table 19. EI COORDINATEs Extracted From MP Schema for COA 3127

Table 20. EO COORDINATEs Extracted From MP Schema for COA 3128

Table 21. Data Function UFP Using Nested COORDINATE129

Table 22. Nominal Effort Estimates for COA 1 ..130

Table 23. COCOMO II Output ..133

Table 24. UFP Summation for Examples in Chapter IV ...137

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

COA Course of Action Analysis

COCOMO II COnstructive COst MOdel II

DET Data Element Type

DOD Department of Defense

DODAF DOD Architecture Framework

EI External Input

EIF External Interface File

EO External Output

EQ External Inquiry

FFBD Functional Flow Block Diagram

FP Function Point

FPA Function Point Analysis

FPC Function Point Counting

FTR File Type Referenced

IFPUG International Function Point User Group

ILF Internal Logical File

RET Record Element Type

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

There are many people in my personal and professional life who have contributed,

both directly and indirectly, to the successful completion of this work. I would like to take

this opportunity to acknowledge their encouragement. I would like to thank my friends

and family for their constant love and support; my committee and advisor, who never let

me waver; and most especially my husband, without whom none of this could have

happened.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. OVERVIEW

The Department of Defense (DOD) is in the process of transforming its stove-

piped, software-intensive systems into integrated, adaptable, cyber-hardened systems that

leverage software, system, and system-of-systems (SoS) engineering techniques.

Historically, there have been significant but often disjointed efforts to develop

architectural descriptions that can allow consistent design and analysis of new and legacy

systems. Architectural design and analysis are part of a powerful mechanism that

captures design decisions early in the process, so they can be assessed and modified

without incurring the unnecessary costs of incorrect implementation.

Architectural design decisions are often captured through a system-by-system

analysis, using a spectrum of architecture description representations from natural

language to formal notations. For this reason, inconsistent architecture descriptions of the

system and the environment require analyzing decisions through manually intensive

methods, such as inspections and reviews, since the lack of consistent description

methods makes automated analysis almost impossible. System development and software

architecture development efforts are often implemented as if they were unrelated, with

incomplete or duplicative results, yielding technically and programmatically

unsustainable outcomes.

This is an unfortunate state of affairs because architecture matters. According to

Rozanski and Woods, “every system has an architecture, whether or not it is documented

and understood” [1, p. 20]. Architecture deserves the attention of technical and

programmatic decision-makers because it can capture design decisions that allows them

to verify socio-technical assertions. Without accurate and complete architectural

descriptions, the DOD cannot determine disposition strategies for legacy systems (e.g.,

migrate, sunset), system-development strategies (e.g., buy/adopt/build), interoperability

and integration strategies for incremental implementation that inform total cost of

ownership (TCO) and return on investment (ROI), and meaningful engineering metrics

 2

that inform forecasting (e.g., estimates of new services or system elements) for future

increments of a system’s development.

Stakeholders should have complementary interests, but due to incomplete or

insufficient architecture representations, their interests often conflict. For example, a

software engineer may expect behaviors to be represented by UML sequence diagrams,

Agile user stories, high-level pseudocode, or implemented code. A SoS engineer, on the

other hand, may want to see functional flow block diagram FFBD boxes and arrows and

to search for the conditions that result in emergent behavior. Cost analysts review the

resourcing implications for each instance of system and environment architecture,

leveraging a spectrum of estimation strategies from Excel through parametric models.

Each user wants the system to work from his or her perspective, independent of the

healthy tensions between cost and design [2].

To meet these multi-stakeholder challenges, organizations expend significant

resources to develop architecture descriptions of an individual system, with only a

cursory view of the impact to and from the environment with which it interacts.

Architecture descriptions must assist in capturing design decisions, provide a framework

to reason about those decisions, and then facilitate analyses to verify assertions early

enough in the design process to prevent incurring the costs of incorrect implementation.

Cost must be considered a necessary attribute of an architecture element, and software

must not be considered an afterthought. These practical requirements can be satisfied by

early and consistent behavioral modeling and the extraction of statistics from executable

architecture models that inform cost.

A. RESEARCH GOAL

The goal of this research is to introduce a newly developed methodology, called

ThreeMetrics, which extracts unadjusted function point (UFP) counts from discrete

architecture behavioral models; these models were created from the Monterey Phoenix

(MP) modeling language and framework for use in cost estimation models such as

Constructive Cost Model II (COCOMO II), protected by copyright [3]–[5]. Additionally,

this research discusses the extraction of scenarios (use cases) from the MP model that can

 3

inform distinct integration test cases and the presentation of multiple views for

communication with a spectrum of stakeholders. The name ThreeMetrics represents these

three metrics: UFP count, use cases to inform integration test estimates, and views of the

architecture.

The ThreeMetrics methodology contributes to technical and programmatic

decision making by providing the ability to refine and analyze executable architecture

models beginning at the earliest design stages.

B. SIGNIFICANCE OF THE PROBLEM AND ITS POTENTIAL IMPACT

Unlike private industry, DOD organizational strategies and resourcing are not

directly governed by market influences. A product’s time to market and internal

programmatic efficiencies do not determine whether a government organization survives

through the next quarter.

Senior DOD decision-makers may not understand the mechanics of architecture

modeling, but they do understand TCO, ROI, cost savings, cost avoidance, and

efficiencies. They understand the need for data that inform their decisions to invest in

specific implementations and to quickly and accurately assess whether the ROI is

warranted. Decision makers also understand the operational impact on service men and

women no matter whether they are still part of the DOD or have transitioned to veteran

status.

In the absence of strong influences forcing consistent cultural change across the

DOD, enforcement mechanisms, informed by data that are objective, repeatable, timely,

and understandable, offer valuable alternatives.

C. SPECIFIC GOALS OF THIS RESEARCH

The ThreeMetrics methodology employs architecture modeling of the behaviors

of a software-intensive system, the environment, and the system interacting with the

environment, in order to inform technical and investment decisions. This research

accomplishes the following:

 4

• Presents a methodology to extract an UFP count from MP’s executable
architecture models for use in software cost estimation

• Leverages precise behavioral modeling using MP to assess architecture design
decisions and their impacts

• Relates architecture modeling to resourcing through analysis of behaviors and
UFP counts, leveraging complexity and size metrics such as the data element
type (DET)

• Extracts use cases to inform integration testing estimates

• Visualizes results in architecture views, which can be used to communicate
with multiple stakeholders

As discussed by Auguston and Whitcomb “The MP behavior model is based on

the concept of an event as an abstraction of activity” [3]. MP is an executable architecture

model that can be executed on tools to generate examples of the behaviors in the form

event traces (use cases). An executable architecture model can be inspected and

debugged to test whether the architecture model accurately captures the behaviors of the

system.

MP’s foundation is in lightweight formal methods, which are essential to

behavioral modeling of complex systems because they remove ambiguity from the

architecture model. As with all assessments, visual representations and automated tools

assist architecture assessments based on lightweight formal methods. Such tools provide

immediate feedback, help identify errors once an early architecture draft is constructed,

and allow the user to reason about the model. There are many tools that support

lightweight formal methods-based analysis, including MP’s Analyzer on Firebird [6],

Eagle6 [7], and Alloy Analyzer [8]. Firebird and Eagle6 are implementations of the MP

framework. Eagle6 is a commercial tool, which has been graciously made available for

select research purposes. Firebird is a Naval Postgraduate School (NPS) implementation

that is publicly available and was ultimately selected for this research. A more detailed

discussion of MP and the tool MP Analyzer on Firebird, or simply Firebird, is included in

Chapter II Section E.

 5

This research also leverages the International Function Point User Group

(IFPUG)’s counting method, which uses a function point (FP) as the unit of functional

size. IFPUG states, “A Function Point is a normalized metric used to evaluate software

deliverables and to measure size based on well-defined functional characteristics of the

software system” [9]. Function point analysis (FPA) provides a way for measuring

software development and maintenance, independent of the technology used for

implementation. FPA is viewed from the perspective of the functionality requested by

and provided to the user, either a human user or another system. FP descriptions can also

help visualize a system, its sub-components, and the environment to address the concerns

of specific stakeholders. As such, FPA is an initial step to describing the architecture

model of a system.

One of the earliest activities in the FPA counting process is identifying the

application boundary. FPA transactional functions can be viewed as markers of this

boundary. The ThreeMetrics methodology unambiguously defines the boundaries and

interactions of the system and the environment (i.e., everything but the system, including

the user) through descriptions in the MP’s model schema of the FPA transactional

functions. The interactions of the FPA data function types are also represented in the

MP’s model schema. Once the boundaries are identified and the interactions have been

described, the transactional and data function types are extracted from the MP model and

complexity value assigned to provide the overall UFP count.

The UFP count is then used as input into COCOMO II to calculate an effort

estimate. The MP model is a rich source of information. In addition to extracting a UFP

count, the number of use cases to inform integration test estimates and view of the

architecture are also extracted from the MP model.

Chapter II of this dissertation presents related work that influenced this research.

The ThreeMetrics methodology is then described in Chapter III. The methodology is

demonstrated through analyzing three examples in Chapter IV. Chapter V provides a

summary of results and findings.

 6

D. PROPOSED ADVANCES TO THE STATE OF THE ART

The ThreeMetrics methodology relates well-established methodologies, such as

FP counting and COCOMO II cost modeling, to an executable behavioral modeling of

system- and software-architecture specifications.

ThreeMetrics improves on previous state-of-the-art, semi-formal representations

used by current function-point-counting methods. By using high-level pseudocode and

composition operations from the MP framework, the resulting behavioral architecture

model can be iteratively inspected and revised until it represents accurate behaviors.

The precise model of the system- and software-architecture specification includes

describing the boundary separating the application under analysis and the environment. If

architecture is considered a bridge between the requirements and high-level design, then

an architecture model helps to build the correct bridge. The MP model is executed using

Firebird, resulting in views of the architecture that are automatically generated. These

views establish a “common mental model,” a model that all users can interpret, used to

communicate with a spectrum of stakeholders.

 The development of a precise architecture and commonly understood views early

in the product’s life cycle reduces the potential for software failure and lowers costs in

implementation. This improves on the state-of-the-art by providing a mechanism to

execute the representation of both the application and the environment using the same

modeling framework, and then automatically generating use cases and scenarios (i.e.

views of the architecture model) that serve as examples that humans can understand

better than generic descriptions.

The MP model can be inspected manually or by automated tools to extract the

number of composition operations that represent the transactional functions and data

functions and their associated complexity. Once the UFP count is calculated, it is then

inserted into the COCOMO II cost-estimation models to determine effort.

 7

II. RELATED WORK

As discussed in Chapter I, the goal of this research is to develop a methodology to

extract UFP counts from executable architectural behavioral models for use in cost-

estimation models, such as COCOMO II, to inform effort estimates early in the life cycle

of the system. In order to achieve this research goal, the goal itself had to be decomposed

into a set of executable research tasks, exploring how mature methodologies and concepts

could be linked to create a new methodology. The related works chapter highlights the

concepts that established the foundation on which this research was built.

Developing the ThreeMetrics methodology required an understanding of what

products would result from applying the methodology to communicate effort estimates

early in the life cycle of the system. Sections A through F of Chapter II highlight the

following key points that are relevant to this research.

• The scope of effort estimates: For this research, effort estimates included
person-month effort, schedule, cost, and integration testing. This led to
assessing the COCOMO II model for person-month effort, schedule, and cost
and considering inputs that could be used in COCOMO II, such as UFP
counts. Section A of this chapter highlights key points about software cost
estimation in general, COCOMO II specifically, and introduces the
relationship between UFP counts and COCOMO II.

• Unadjusted function point counts: UFP counts are one of several inputs that
can be used in the COCOMO II model. UFP counts were selected as the input
to COCOMO II for this research. Section B of this chapter addresses FPA,
specifically data and transactional functions, and the development of
unadjusted FP counts.

• Architecture modeling: UFP counts are developed very early in the lifecycle
of the application being counted. Transactional and data functions can be
viewed as interactions internal and external to the application being counted.
These interactions can be represented in models of the system’s architecture.
Section C of this chapter addresses architecture modeling.

• Formal, semi-formal, and lightweight formal methods: One of the greatest
challenges in system design and development is ensuring that the users’
requirements have been satisfied by the implemented application. User
requirements are often communicated in natural language, which can be
ambiguous. Specificity in the description of the requirements can be achieved
using more precise formal descriptions, but the resources needed to create

 8

them can be prohibitive. Section D of this chapter discusses the role of formal,
semi-formal, and lightweight formal methods as they relate to this research.

• Monterey Phoenix: Describing the behaviors of an application and the
environment with which it interacts can be improved by capturing the
behaviors in an executable architecture model, using a modeling language to
describe that information, and then using an automated tool to execute the
model. The MP modeling language and framework and the MP Analyzer on
Firebird were used to describe and execute MP architecture behavioral
models. Section E of this chapter provides a description of MP and the aspects
of the language and framework relevant to this research.

• Integration test estimates: Integration testing is estimated to represent 25
percent of the total effort associated with an application. The schedule results
from the construction phase of the COCOMO II model and the number of
event traces generated from the MP model running on Firebird are used to
inform integration testing estimates. Section F discusses what integration
testing is and the relevance of the scope used in MP Analyzer on Firebird for
the generation of the event traces.

Although these topics may be familiar to some readers, they may not be as

familiar to others. The reader will be able to explore the references for a more complete

description of each term and the associated topic. The combination of these concepts was

instrumental in selecting what methodologies would be used in the development of

ThreeMetrics, which are discussed in Chapter III of this document.

A. SOFTWARE COST ESTIMATION

There is a range of estimation techniques and algorithmic cost modeling that

should be considered when estimating software costs and impacts to schedule. The main

cost contributors to a software development project include hardware, software evolution,

training, and the effort of software developers. Most practitioners believe that effort is the

greatest contributor to overall effort and cost. Quantifying effort is a necessary activity

when laying out the resources needed to successfully develop a new software system or

enhance an existing one. Two key categories of metrics associated with productivity

estimates are size-related metrics and function-related metrics. As noted by Sommerville,

Productivity estimates are usually based on measuring attributes of the
software and dividing this by the total effort required for development.
There are two types of metric that have been used:

 9

1. Size-related metrics. These are related to the size of some output from
an activity. The most commonly used size-related metric is lines of
delivered source code. Other metrics that may be used are the number of
delivered object code instructions or the number of pages of system
documentation.

2. Function-related metrics. These are related to the overall functionality
of the delivered software. Productivity is expressed in terms of the amount
of useful functionality produced in some given time. Function points and
object points are the best-known metrics of this type.

Lines of source code per programmer-month (LOC/pm) is widely used as
software productivity metric. You can compute LOC/pm by counting the
total number of lines of source code that are delivered, then divide the
count by the total time in programmer-months required to complete the
project. This time therefore includes the time required for all other
activities (requirements, design, coding, testing and documentation)
involved in software development. [10, pp. 615–616]

While LOC/pm is a valuable productivity metric, it can be misleading. If one

programmer writes a more concise code than another programmer, or uses a more

expressive coding language, the perception of productivity will be inconsistent with

reality. An attribute other than coding size needs to be considered. Sommerville, with the

contributions of Albrecht and Gaffney, discusses,

An alternative to using code size as the estimated product attribute is to
use some measure of the functionality of the code. This avoids the above
anomaly, as functionality is independent of implementation language. The
best known function based measure is the function-point count.
[10, pp. 615–616]

The activities of the international function point users group (IFPUG) continue to

standardize and refine the FP counting methodology initiated by Albrecht, and are

discussed in more detail in section B of this chapter. The use of UFP counts in

algorithmic cost models is of specific interest to this research. Sommerville explains,

Algorithmic cost modelling uses a mathematical formula to predict project
costs based on estimates of the project size, the number of software
engineers, and other process and product factors. An algorithmic cost
model can be built by analysing the costs and attributes of completed
projects and finding the closest fit formula to actual experience.

 10

In its most general form, an algorithmic cost estimate for software cost can
be expressed as:

Effort = A x SizeB x M

where A is a constant factor that depends on local organisational practices
and the type of software that is developed. Size may be either an
assessment of the code size of the software or a functionality estimate
expressed in function or object points. The value of exponent B usually
lies between 1 and 1.5. M is a multiplier made by combining process,
product and development attributes, such as the dependability
requirements for the software and the experience of the development team.
Most algorithmic estimation models have an exponential component (B in
the above equation) that is associated with the size estimate. This reflects
the fact that costs do not normally increase linearly with project size. As
the size of the software increases, extra costs are incurred because of the
communication overhead of larger teams, more complex configuration
management, more difficult system integration, and so on. Therefore, the
larger the system, the larger the value of this exponent. Unfortunately, all
algorithmic models suffer from the same fundamental difficulties:

1. It is often difficult to estimate Size at an early stage in a project when
only a specification is available. Function-point and object-point estimates
are easier to produce than estimates of code size but are often still
inaccurate.

2. The estimates of the factors contributing to B and M are subjective.
Estimates vary from one person to another, depending on their background
and experience with the type of system that is being developed…

A number of algorithmic models have been proposed as the basis for
estimating the effort, schedule and costs of a software project. The
COCOMO model is an empirical model that was derived by collecting
data from a large number of software projects. These data were analysed
to discover formulae that were the best fit to the observations. These
formulae link the size of the system and product, project and team factors
to the effort to develop the system. [10, pp. 615–616]

 11

Table 1 illustrates the primary methods for cost and schedule estimation and the

strengths and weaknesses of each, as discussed by Boehm et al. in [11].

Table 1. Estimation Method Comparison. Adapted from [11, p. 226].

As discussed by Boehm et al. “Algorithmic models are based on cost estimating

relationship (CER) or schedule estimating relationship (SER) algorithms.” COCOMO II

is included in this category and is characterized by Boehm et. al., as one of “fairly general

software definition, development, and evolution cost and schedule estimation models”

[11, p. 225–226].

COCOMO II was selected for this research because it is a well-documented, well-

exercised model, supported by automated tools. The University of Southern California

(USC) Center for Systems and Software Engineering (UCSSE) describes the history and

current state of the COCOMO II model,

 12

After several years and the combined efforts of USC-CSSE, ISR at UC
Irvine, and the COCOMO II Project Affiliate Organizations, the result is
COCOMO II, a revised cost estimation model reflecting the changes in
professional software development practice that have come about since
the 1970s. This new, improved COCOMO is now ready to assist
professional software cost estimators for many years to come. [5]

COCOMO II consists of three sub models: the Applications Composition, Early

Design, and Post-architecture models. UFP counts are applicable to both the Early

Design and Post-architecture models, and both models are of interest to this research.

As described by USCCE,

COCOMO II provides the following three-stage series of models for
estimation of Application Generator, System Integration, and
Infrastructure software projects:

1. The earliest phases or spiral cycles will generally involve prototyping,
using the Application Composition model capabilities. The COCOMO II
Application Composition model supports these phases, and any other
prototyping activities occurring later in the life cycle.

2. The next phases or spiral cycles will generally involve exploration of
architectural alternatives or incremental development strategies. To
support these activities, COCOMO II provides an early estimation model
called the Early Design model. This level of detail in this model is
consistent with the general level of information available and the general
level of estimation accuracy needed at this stage.

3. Once the project is ready to develop and sustain a fielded system, it
should have a life-cycle architecture, which provides more accurate
information on cost driver inputs, and enables more accurate cost
estimates. To support this stage, COCOMO II provides the Post-
Architecture model. [4, p. 7]

The counting process for determining the UFP count used in COCOMO II for

both the Early Design and Post-Architecture models is consistent with the approach

supported by the IFPUG. A combination of UFP and source lines of code is used for the

Early Design and Post-Architecture models, leveraging counting rules from the IFPUG

for the UFP count. As discussed by UCSSE with contributions from Jones,

To determine the nominal person months for the Early Design model,
the unadjusted function points have to be converted to source lines of

http://www.isr.uci.edu/
http://www.isr.uci.edu/
http://csse.usc.edu/csse/research/COCOMOII/cocomo_sponsors.htm

 13

code in the implementation language (assembly, higher order language,
fourth-generation language, etc.) in order to assess the relative
conciseness of implementation per function point. COCOMO II does
this for both the Early Design and Post-Architecture models by using
tables such as those found in [Jones 1991] to translate Unadjusted
Function Points into equivalent SLOC. [4, p. 20]

The COCOMO II tool [5] automatically converts UFP counts into source lines

of code for a specific implementation language that is an option that can be selected in

the tool. This calculation can also be done manually using conversion ratios such as

those found in Table 2 from [12], which is an updated version to the table referenced by

USCCE in [4, p. 20]. This table includes a SLOC/UFP conversion ratio for the Java

language.

Table 2. UFP to SLOC Conversion Ratios. Adapted from [12].

In COCOMO II, a development effort estimate is in person months (PM). As

described by USCCE in the COCOMO II Model Definition Manual v. 2.1, including

contributions from Banker et al.,

The nominal effort for a given size project and expressed as person
months (PM) is given by …

 14

PMnominal = A x (Size)B …

[This equation] is the base model for the Early Design and Post-
Architecture cost estimation models. The inputs are the Size of software
development, a constant, A, and a scale factor, B. The size is in units of
thousands of source lines of code (KSLOC). This is derived from
estimating the size of software modules that will constitute the
application program. It can also be estimated from unadjusted function
points (UFP), converted to SLOC then divided by one thousand.
Procedures for counting SLOC or UFP are explained in the chapters on
the Post-Architecture and Early Design models respectively. The scale
(or exponential) factor, B, accounts for the relative economies or
diseconomies of scale encountered for software projects of different
sizes The constant, A, is used to capture the multiplicative effects on
effort with projects of increasing size. [4, p. 7]

A more detailed discussion of the UFP count, its relationship to SLOC, and its

use in COCOMO II is found in Chapter III, Methodology, and Chapter IV,

Implementation.

B. FUNCTION POINT COUNTING PROCESS

In the late 1970s, Allan Albrecht from IBM was the first person to publicly

describe FPA as a method for functionally sizing software. The IFPUG was formed in

1986. While there are many companies that promote minor variations on the FP counting

process, IFPUG has been viewed as the authoritative source of information with respect

to this research. As described by the IFPUG [13] on its website,

The International Function Point Users’ Group (IFPUG) is a non-profit,
member governed organization. The mission of IFPUG is to be a
recognized leader in promoting and encouraging the effective management
of application software development and maintenance activities through
the use of Function Point Analysis (FPA) and other software measurement
techniques.

The IFPUG website is a valuable resource for FPA information, professional

certifications, educational opportunities, conferences, committees, and working groups.

The IFPUG’s Function Point Counting Practices Manual contains the definitions and the

FP counting methodology used as the baseline for this research. The IFPUG information

was augmented, with contributions from FP counting practitioners, to understand how the

 15

methodology is used in practice. Although there is variability in the opinions,

interpretations and refinements of the IFPUG FP counting methodology, the basic

concepts from that baseline are still consistently understood and implemented in tools and

practice. Additionally, there are descriptions, tutorials, and papers from practitioners,

each offering their own perspective on how to interpret the functional requirements and

apply the counting methodology [13]–[17].

The IFPUG provides the following definition, “Function Points are an

internationally standardized unit of measure used to represent software size. The IFPUG

functional size measurement method (referred to as IFPUG 4.3.1) quantifies software

functionality provided to the user based solely on its logical design and functional

requirements” [13].

For all the promoters and benefits associated with FPA, there are also detractors

and drawbacks. As derived from Kemerer [18] and Low and Jeffery [19] and stated by

Fraternali et al.,

It is well known that calculating the function points associated with a
system is a labor intensive, time consuming and imprecise task.
Organizations need experienced personnel dedicated to function point
analysis, a substantial tuning period, and a large project base before
reaching accurate predictions… In other words, much the same problems
occurring in manual implementation of software affect also the manual
computation of the software size. [20]

Yet, FP descriptions can be considered ways to view a system and its input and

output activities, with the primary focus on addressing concerns of stakeholders at the

outset.

Data function and transactional function types are foundational terms in the FPA

community as is the concept of the users’ perspectives. For the purposes of FPA, a user

can be a human or another machine interacting with the software. As discussed by the

IFPUG in [9], the well-documented process to perform a FP count includes the following

steps:

• Gather available source information

• Determine the counting scope and boundary

 16

• Count data function and transactional function types

• Determine the unadjusted FP count

• Determine the value adjustment factor

• Calculate the final adjusted FP count

One of the earliest steps in the FPA counting process is identifying the counting

scope (e.g., new application, modification to an existing application), and the application

boundaries (e.g., what is the application of interest being considered for the count and

what is not). As discussed by IFPUG,

Function point counts can be identified, based on their purpose, as one of
the following:

• Development project function point count

• Enhancement project function point count

• Application function point count [9, Sec.2-4]

IFPUG also clearly defines the boundary of the application being counted, to

distinguish it from the environment:

The boundary is a conceptual interface between the software under study
and its users. The boundary (also referred to as application boundary):

• Defines what is external to the application.

• Indicates the border between the software being measured and the user.

• Acts as a ‘membrane’ through which data processed by transactions (EIs, EOs
and EQs) pass into and out from the application.

• Encloses the logical data maintained by the application (ILFs).

• Assists in identifying the logical data referenced by but not maintained within
this application (EIFs).

• Is dependent on the user’s external business view of the application. It is
independent of technical and/or implementation considerations. [9, Sec. 5-4]

 17

Figure 1 illustrates key concepts associated with FP counting and analysis:

application boundary containing the application being considered, the transactional

functions (External Input-EI, External Output-EO, External Inquiry-EQ), the data

functions (Internal Logical File-ILF, External Interface File-EIF), and a User sitting in

front of his computer.

Figure 1. Functionality as Viewed from the User’s Perspective.
Adapted from [21].

The IFPUG provides the following definitions in [9], which support the concepts

illustrated in Figure 1:

An external interface file (EIF) is a user recognizable group of logically
related data or control information, which is referenced by the application
being measured, but which is maintained within the boundary of another
application… [9, Sec.6-2]

An internal logical file (ILF) is a user recognizable group of logically
related data or control information maintained within the boundary of the
application being measured… [9, Sec.6-2]

An elementary process is the smallest unit of activity that is meaningful to
the user… [9, Sec.6-3]

A data function represents functionality provided to the user to meet
internal and external data storage requirements. A data function is either
an internal logical file or an external interface file… [9, Sec.6-4]

Assign each identified ILF and EIF a functional complexity based on the
number of data element types (DETs) and record element types (RETs)
associated with the ILF or EIF. This section defines DETs and RETs and
includes the rules for each… [9, Sec.6-5]

 18

A data element type (DET) is a unique, user recognizable, non-repeated
attribute… [9, Sec.6-5]

A record element type (RET) is a user recognizable sub-group of data
element types within a data function… [9, Sec.6-7]

A transactional function is an elementary process that provides
functionality to the user to process data. A transactional function is an
external input, external output, or external inquiry… [9, Sec.7-1]

An external input (EI) is an elementary process that processes data or
control information sent from outside the boundary… [9, Sec. 7-3]

An external output (EO) is an elementary process that sends data or
control information outside the application’s boundary and includes
additional processing beyond that of an external inquiry… [9, Sec.7-3]

An external inquiry (EQ) is an elementary process that sends data or
control information outside the boundary… [9, Sec.7-3]

A file type referenced (FTR) is a data function read and/or maintained by
a transactional function… [9, Sec.7-14]

Practitioners often expound upon the definitions of the original IFPUG terms.

Longstreet in [15] provides a practitioner’s view of transactional and data function types,

and describes key words in natural language that are associated with data functions and

transactional functions. FTRs, RETs, and DETs are important because their count

influences the functional complexity and, by extension, the functional size used to

calculate the unadjusted FP count for each transactional or data function. The summation

of the UFP count for each data function and each transaction function results in the

overall UFP point count. Functional complexity and size are identified for each ILF, EIF,

EI, EO, and EQ, in Tables 3, 4, 5, 6, and 7, based on values captured from the IFPUG [9].

These tables are used in the calculation of the UFP counts in Chapters III and IV of this

dissertation.

 19

Table 3 contains the functional complexity and size values used to determine the

UFP count for an EI.

Table 3. Functional Complexity and Size for EIs. Adapted from
[9, Sec. 1, p. 19 Table 6 and 8].

Table 4 contains the functional complexity and size values used to determine the

UFP count for an EQ.

Table 4. Functional Complexity and Size for EQs. Adapted from
[9, Sec.1, p. 19, Table 7 and Table 8].

Table 5 contains the functional complexity and size values used to determine the

UFP count for an EO.

Table 5. Functional Complexity and Size for EOs. Adapted from
[9, Sec.1, p. 19, Table 7 and Table 8].

 20

Table 6 contains the functional complexity values used to determine the UFP

count for an ILF and EIF.

Table 6. Functional Complexity for ILF and EIF. Adapted from
[9, Sec.1, p. 13 Table 1].

Table 7 contains the functional size values used to determine the UFP count for an

ILF and EIF.

Table 7. Functional Size for Data Functions. Adapted from
[9, Sec. 1, p. 13, Table 2].

 21

Examples of UFP calculations using these tables are provided in Chapters III and

IV. Once the total UFP count has been calculated, the adjusted FP Count can be

calculated using the value adjustment factor (VAF). For the purpose of this research, the

UFP was used in lieu of the adjusted FP count because the UFP count is an input for

sizing in the COCOMO II model. As explained by Boehm et al., from a collection of his

works edited by Selby,

Each instance of these function types is then classified by complexity
level. The complexity levels determine a set of weights which are applied
to their corresponding function point counts to determine the Unadjusted
Function Points quantity. This is the Function Point sizing metric used by
COCOMO 2.0. The usual Function Point procedure involves assessing the
degree of influence of fourteen application characteristics on the software
project determined according to a rating scale of 0.0 to 0.05 for each
characteristic. The fourteen ratings are added together, and then added to a
base level of 0.65 to produce a general characteristic adjustment factor that
ranges from 0.65 to 1.35. Each of these fourteen characteristics, such as
distributed functions, performance, and reusability, thus has a maximum
5% contribution to the estimated effort.

This is significantly inconsistent with COCOMO experience; thus,
COCOMO 2.0 uses Unadjusted Function Points for sizing, and applies its
reuse factors, cost driver effort multipliers, and exponent scale factors to
this sizing quantity. [22, p. 281–282]

At a high level, it appears that the goal of the IFPUG and the FPA methodology is

to provide structure and consistency in ambiguity, creating a bridge between functional

requirements and high level design, independent of implementation language. In effect,

this bridge is an architectural model of the software system being counted, so that the

attributes of the system, as seen from the perspective of the user, can be represented in a

way that other FP counters can understand.

FP descriptions can then be considered a way to view the behaviors of a system

through its input and output activities, i.e. its interactions. These behaviors can be

described with greater specificity using a Monterey Phoenix executable architecture

model.

An event in MP is an abstraction of an activity within a system. An elementary

process represents the smallest unit of activity in a system. A transactional function is an

 22

elementary process. The behavior of a transactional or data function can be described in

an MP architecture model as an abstraction of an interaction, by using high-level pseudo-

code. The functional aspects of requirements can then be represented in a way that is

amenable to incremental refinement.

The composition operations COORDINATE and SHARE ALL can be viewed as

markers of an interaction in the MP model. The structure and the complexity of

interactions in MP provide a source for assigning functional complexity and size values

to the UFP count. These values are consistent with the functional complexity and

functional size values associated with DETs, RETs, and FTRs in the function point

counting methodology.

Since an MP model is precise and formal, FP metrics can be extracted from the

model by using automated tools, to support cost estimates early in the life cycle of an

application. A more detailed discussion of software architectures and software

architecture modeling is in Chapter II Section C; a more detailed discussion of MP can be

found in Chapter II Section E; their relationship is described in the ThreeMetrics

methodology in Chapter III.

C. ARCHITECTURE AND ARCHITECTURE MODELING

The implementation of a software system is a socio-technical endeavor. As such,

the system’s purpose and relevance have to be communicated to multiple stakeholders in

a way that hides its complex detail but retains its key characteristics. This can be

achieved through the model of the architecture of a system and the environment with

which it interacts. An architecture model is an abstraction that is used to reason about

what the real system and environment will be. The model can be manipulated and

presented in such a way as to abstract away detail until needed, at which point

incremental refinement of the architecture shines a light on the approach to design and

implementation.

Yet, ‘architecture’ is one of the most overused, misused, and disrespected words

in the DOD vocabulary. Rather than viewing architectural analysis and architecture

modeling as powerful tools to establish a “common mental model” of a system across a

 23

spectrum of stakeholders, models of architectures are viewed as check-the-block

requirements for acquisition milestones and DOD directives. The notations and tools are

considered, in many cases rightly so, oversold promises that, in actuality, require an

expensive shadow workforce for their creation and maintenance, with a fraction of return

on investment. This is an unfortunate situation that has evolved due to cottage-industry

mentality, and the demands of well-meaning bureaucratic processes.

The model of the architecture of a system and the environment with which it

interacts is the single most important artifact that an organization can have. The model

contributes to the following activities:

• Unifying an organization

• Eliciting and confirming what the user wants

• Assigning organizational responsibilities and informing resourcing decisions
across organizations

• Exploring high level design decisions

• Positioning for development

• Executing developmental, integrated, and operational testing

• Supporting deployment into production

• Controlling software evolution in sustainment

Perhaps the sticking point is the multitude of definitions of the terms that are

directly and indirectly associated with the words ‘architecture’ and ‘architecture model’,

including ‘system’, ‘software system’, ‘application’, ‘software architecture’, ‘system

architecture’, ‘environment’, ‘system-of-systems’, ‘socio-technical systems’, ‘software

architecture models’, and ‘modeling notations.’ There are many definitions available

across multiple disciplines; only those that are relevant to and have influenced this

research follow.

In software engineering and architecture literature, the terms ‘application’ and

‘system’ are often assumed to be used interchangeably. Practitioners will argue that an

implemented system must not only include the application, but also its target computing

 24

platform. The definition is often then expanded to include data, people, and processes,

depending on the reference point of the practitioner.

The IFPUG throughout [9] appears to use the terms ‘application’ and ‘system’

interchangeably.

Pfleeger and Atlee describe a system as “a collection of things: a set of entities, a

set of activities, a description of the relationships among entities and activities and a

definition of the boundary of the system” [23, p. 17].

Rozanski and Woods describe a computer system as “the software elements that

you need to specify and/or design in order to meet a particular set of requirements and the

hardware you need to run those software elements on” [1, p. 11].

Rechtin defines a system as “A set of different elements so connected or related as

to perform a unique function not performable by the elements alone” [24, p. 7]. For the

purposes of this research, the environment is everything but the system under analysis.

The environment can be another system or a system of systems. The user is considered

part of the environment with which an application interacts.

The Department of Defense Architecture Framework (DODAF) describes a

system as “a functionally, physically, and/or behaviorally related group of regularly

interacting or interdependent elements” [25].

Sommerville defines a system as “a purposeful collection of interrelated

components that work together to achieve some objective” [10, p. 21]. Sommerville

introduces technical computer-based systems and socio-technical systems, and describes

the key characteristics of a socio-technical system:

emergent properties that are properties of the system as a whole rather
than associated with individual parts of the system. Emergent properties
depend on both the system components and the relationships between
them…

They are often nondeterministic. This means that when presented with
specific input, they may not always produce the same output…

 25

Furthermore, use of the system may create new relationships between the
system components and hence change its emergent behavior. [10, p. 21–
22]

As an addition to these definitions, Conway states “Any organization that designs

a system (defined more broadly here than just information systems) will inevitably

produce a design whose structure is a copy of the organization's communication

structure” [26].

Although there are no globally agreed to definitions of a system of systems,

Vaneman and Jaskot suggest that it is “a set or arrangement of systems that results when

independent and task-oriented systems are integrated into a larger systems construct, that

delivers unique capabilities and functions in support of missions that cannot be achieved

by individual systems alone” [27].

Sommerville’s definitions associated with a socio-technical system are most

relevant to a practitioner’s experience with software, particularly the inclusion of

interaction with a human user and the reality of emergent behavior. However, since using

the qualifier ‘socio-technical’ to describe a system is often not well received, ‘software

system’ is still the term of choice.

The relationship between a system, the architecture of a system, and an

architecture model of a system is confusing. Rozanski and Woods state “Every system

has an architecture, whether or not it is documented and understood” [1, p. 20].

The challenge practitioners often face is interpreting the architecture of an

existing system and environment, or the model of an architecture of a new system or

enhancement to an existing system. Often, the artifacts describing them have been

documented incorrectly, incompletely, or not documented at all. For an existing system,

the architecture may be recovered from implementation artifacts, but that is not a simple

task. Maier and Rechtin define an architecture as “The structure—in terms of

components, connections, and constraints—of a product, process, or element”

[28, p. 415].

 26

Rozanski and Woods reiterate the ISO/IEC 42010 definition of architecture,

which is expanded to address the influences of environment: “The architecture of a

system is the set of fundamental concepts or properties of the system in its environment,

embodied in its elements, relationships, and the principles of its design and evolution”

[1, p. 12].

DODAF does not explicitly define the term ‘software system architecture’ or its

environment, but the framework and views can be used to describe the architecture of a

system that includes software and software services.

As suggested by Taylor et al. “A software system’s architecture is the set of

principal design decisions made about the system” [29, p. 58].

When considering the software architecture of a system and environment,

identifying what to abstract away or hide is as much an art as a science. Bass et al.

explain:

an architecture is first and foremost an abstraction of a system that
suppresses details of elements that do not affect how they use, are used by,
relate to, or interact with other elements. In nearly all modern systems,
elements interact with each other by means of interfaces that partition
details about an element into public and private parts. Architecture is
concerned with the public side of this division; private details-those
having to do solely with internal implementations—are not architectural.
[30, p. 21]

This definition was very interesting, as it begs the question, what is private versus

what is public? How and where is the boundary drawn for the system under analysis,

when there is some confusion as to the definition of the system? Is it an arbitrary

boundary? In the absence of a definitive architecture, cyber artifacts that describe the

accreditation boundary of a system are useful tools, to support the steps needed to recover

the architecture of the internal components.

Once a software system is imagined, the next focus is to define it through a model

of its architecture. Taylor et al. describe an architectural model as

 27

an artifact that captures some or all of the design decisions that comprise a
system’s architecture. Architectural modeling is the reification and
documentation of those design decisions…

A software systems architecture is captured in an architectural model
using a particular modeling notation. An architectural modeling notation is
a language or means of capturing design decisions. [29, p. 185]

In the current practice, a new system or capability may be introduced into an

existing environment, resulting in unexpected behaviors requiring corrective action that

has a resourcing impact. Software engineers and architects need to be able to analyze the

new system and existing environment in order to advise program managers about the

impacts to cost, schedule, and operations. Architectural modeling offers a way to assess

architectural design decisions and their impacts prior to, during, and after implementation

and deployment.

A model of an architecture should not be confused with the architecture itself. As

discussed by the Object Management Group:

A model is always a model of something. The thing being modeled can
generically be considered a system within some domain of discourse. The
model then makes some statements of interest about that system,
abstracting all the details of the system that could possibly be described,
from a certain point of view and for a certain purpose. [31]

Monterey Phoenix describes the architecture model of a system and the

environment with which it interacts in terms of behaviors: the behaviors of components

of the software system, the behaviors of the interactions between the components, the

behaviors of the environment with which it interacts, and the behavior of its interaction

with the environment [32]–[34].

Techniques used in software system design, such as abstraction and

encapsulation, are directly applicable to the architecture model of a system and its

environment. As discussed in Pfleeger and Atlee and derived from Berard:

However, encapsulation is not the same as information hiding…
abstraction is a technique that helps us identify which specific information
should be visible, and which information should be hidden. Encapsulation
is then the technique for packaging the information in such a way as to

 28

hide what should be hidden, and make visible what is intended to be
visible [23, p. 290].

Seidewitz offers a perspective on model-driven development, discussing

definitions of models, metamodels, and model interpretation leveraging unified modeling

language (UML) terms to describe models of software, specifically the system under

study (SUS) [35].

Selic highlights the necessity of model execution, stating that “one important

advantage of executable models is that they provide early direct experience with the

system being designed” [36].

These become very useful techniques when establishing the boundary of an

application under analysis, and deciding what information to abstract and how to do so.

The development of an architecture model starts with understanding what the user

wants, i.e., his or her requirements, and then creating a representation of those

requirements in architecture models and extracting views that answer questions from

stakeholders, including the user. Pfleeger and Atlee state that “A requirement is an

expression of desired behavior” [23, p. 143]. A system’s required behaviors can be

modeled in MP to confirm that the requirements communicated by the stakeholders have

been satisfied.

Pfleeger and Atlee also highlight that “the architecture of a system is the interface

between required capabilities in a specification and the implemented system” [23, p.

229]. Stakeholders communicate their concerns through requirements, another word that

elicits strong reactions. ‘Requirements’ is an umbrella term that captures functional, non-

functional, derived, technical, as well as variations of the meaning of each one of these

terms. Once the term ‘requirement’ is sufficiently clear, then the process of iterating

between the users and the technical team can begin, followed by employing

methodologies to reason about the design and implementations options. Pfleeger and

Atlee state that

 29

a functional requirement describes required behavior in terms of required
activities such as reactions to inputs and state of each entity before and
after an activity occurs…

The functional requirements define the boundaries of the solution space
for our problem.

A quality requirement or non-functional requirement describes some
quality characteristic the software solution must possess, such as fast
response time, ease of use, high reliability, or low maintenance cost.
[23, p. 148–149]

Once initial functional user requirements are captured, the process of specifying

what the software system will do in terms of tasks and services begins, resulting in an

architectural representation of the system. This iterative process is best served by

modeling the architecture.

A software engineer or developer will find behaviors as represented by

pseudocode, sequence diagrams or use cases necessary to translate the user requirements

into implemented code. Cost analysts will want to understand what each instance of the

architecture at a point in time would cost (from requirements elicitation through software

evolution) and document those resourcing implications in a life cycle cost estimate, or

year of execution spend plan. Testers can leverage architectures to identify what are

optimal instrumentation points and what test cases and strategies are necessary for

development, integration, and operational testing. The program manager must ensure that

both user and acquisition expectations are being met by applying cost and management

controls. As illustrated in Table 8, each stakeholder has his or her own interests and needs

views to assist in understanding the architecture.

 30

Table 8. Architecture: A Bridge between Requirements and
High-Level Design.

Simple box and arrow diagrams, and sequence diagrams are often sufficient to

assist with understanding cost, organizational responsibility, and schedule impacts. The

users just want the system to work, as they have imagined. A prototype of screens, user

stories, and sequence diagrams are supportive of iteratively refining their requirements.

Extracting the appropriate information from architecture to support communication with

multiple stakeholders is always a challenge because it requires multiple related views that

the stakeholders can interpret from their viewpoint.

Kruchten’s 4+1 View model was designed at the outset to describe the

architecture of a software–intensive system, using multiple, integrated views. Each view

focuses on a different aspect of the software system architecture [37]. As with other

architecture frameworks, views, and notations, 4+1 offers a mechanism for engineers and

developers to communicate with each other and with stakeholders. Whether someone

 31

speaks the language of DODAF, 4+1, or utilizes any other framework, understanding

what are the key elements that comprise a software system and its environment, and

where that information is located are critical to dealing with the complexity of a system

within a system of systems. The greatest contribution of frameworks like DODAF and

4+1 is that they offer the opportunity to develop a ‘common mental model’ of the

architecture or a model of the architecture of a system.

Rozanski and Woods are optimistic that stakeholders will respond to an

architectural description (AD), which they define as “a set of products that documents an

architecture in a way its stakeholders can understand and demonstrates that the

architecture has met their concerns” [1, p. 25].

Each activity associated with a system’s lifecycle may require a different view of

the architecture or architecture model to communicate relevant information to different

stakeholders with different interests. The interrelated views of the system and

environment assist in making a complex, incomprehensible problem into something that

is more understandable to all stakeholders.

D. THE ROLE OF FORMAL METHODS, SEMI-FORMAL METHODS AND
LIGHTWEIGHT FORMAL METHODS IN ARCHITECTURE
MODELING

Architecture models play a significant role in the analysis of a software system,

and the degree of formality used to model architecture can range from semi-formal

formal, with lightweight formal methods being a practical compromise.

Taylor et al. classify architecture models as informal, semi-formal, and formal.

Informal models are typically captured in box-and-arrow diagrams, and can provide an

effective high-level view that is understood by many different stakeholders. However,

they are inherently ambiguous and often contain only minimal detail. Semi-formal

architecture models, such as UML, try to balance precision with enough detail to

facilitate communication and support both manual and automated analyses. Formal

models are appreciated by technically-oriented stakeholders, and their notations have

 32

formally defined syntax and semantics. Most models used by practitioners are semi-

formal [29].

Formal methods introduce mathematical rigor into the design of a software

system. Tinelli explains that formal methods have their foundation in “mathematical

logic, a discipline that studies the precise formalization of knowledge and

reasoning” [38].

Collins describes the role of formal methods in software engineering and

computer science, for design and test:

formal methods are system design techniques that use rigorously specified
mathematical models to build software and hardware systems. In contrast
to other design systems, formal methods use mathematical proof as a
complement to system testing in order to ensure correct behavior. [39]

Jackson discusses that the foundation of software is the abstractions associated

with them, where an abstraction is defined as a “structure, pure and simple—an idea

reduced to its essential form” [40]. The selection of the correct level of abstraction, in

order to address specific questions and concerns, is often easier said than done.

Languages such as Z and tools such as Alloy Analyzer assist in the application of formal

methods to the world of the practitioner.

There continues to be some debate regarding the practicality of applying formal

methods to mainstream software engineering activities. Hall presents a perspective that

“formal methods are available and readily useable by practitioners, but yet the theoretical

view offered by proponents of these techniques is somewhat overreaching” [41]. Sastry

appears to support Hall’s position and suggests that semi-formal techniques must

augment formal methods and tools, particularly when addressing system integration [42].

Wieringa describes semi-formal techniques as diagraming and other techniques

that use some form of structured natural language [43]. The manual counting technique of

FPA lends itself to semi-formal design methods. Collins suggests that because of the

rigor involved

 33

formal methods are always going to be more expensive than traditional
approaches to engineering. However, given that software cost estimation
is more of an art than a science, it is debatable exactly how much more
expensive formal verification is…

While an all-encompassing formal description is attractive from a
theoretical perspective, it invariably involved developing an incredibly
complex and nuanced description language, which returns to the
difficulties of natural language. [39]

Hall also indicates that the term ‘formal methods’ covers “the use of mathematics

in software development” [41]. This includes writing and proving a formal specification,

constructing a program based on this specification, and then verifying the program. Hall

states that applying formal methods to develop a formal specification provides a “precise

definition of what the software is intended to do” [41]. This assists in identifying

mistakes prior to implementation in coding.

Wing states that “Formal methods are used to reveal ambiguity, incompleteness,

and inconsistency in a system, and expose design flaws early in the development process

of the system, before finding them in test” [44].

That having been said, utilizing formal methods in and of itself does not guarantee

that the software system will work as intended. Formal methods do assist with removing

the ambiguity of natural language associated with an informal specification, and formal

specifications do need to be translated back into natural language for discussions with

users. That requires a skilled workforce knowledgeable of the application of formal

methods, which is minimally available.

Knowing when and where to use lightweight formal methods is critical to

achieving return on investment of resources expended applying them. Easterbrook et al.,

state that “The lightweight approach to formal design recognizes that formal methods are

not a panacea: there are areas where formal methods are useful, and areas where a formal

specification will accomplish nothing” [45].

 Complex, software-intensive system of systems benefit from the discipline and

precise descriptions of formal models of the systems, since natural language can be

ambiguous. Therefore, a practical alternative to formal design is relevant and needed for

 34

practitioners. A lightweight approach in which formal methods are applied in a limited

way, offer the benefits of formal specification without many of the limitations associated

with cost and complexity.

As highlighted in Agerholm and Larsen, even with a pragmatic lightweight

approach, the “main obstacle is to teach the engineers how to choose which parts to

model and how to make appropriate abstractions of these parts” [46].

MP leverages lightweight formal methods and high-level pseudo code, and its

supporting information offers examples on how to abstract behaviors. This results in a

precise, flexible and practical framework to support behavioral modeling of architectures

[3], [32]. MP was selected over other architecture modeling languages for this research

based on its ease of use, availability of tools that allowed execution of the architecture

model, and views generated by those tools.

E. MONTEREY PHOENIX (MP)

The ThreeMetrics methodology implements Monterey Phoenix, created and

described by Auguston, as “a framework for software system architecture and business

process (workflow) specification based on behavior models” [33].

The challenge for practitioners is determining how to reduce, rather than

automate, complexity. Architectural modeling is a powerful tool, if supported by the

appropriate architectural modeling framework and language. Monterey Phoenix renders a

view of architectures as high level description of behaviors. This is accomplished at the

system and subsystem level and for the interactions between them [32], [33]–[34].

MP utilizes lightweight formal methods to unambiguously describe the behaviors

of a system and the environment with which it interacts. The models are written in high-

level pseudo code, which gives the model author the ability to be both precise and

practical. This research utilized MP architecture models to capture design decisions about

precedence, inclusion, and ordering, although the MP language and framework have

other capabilities that can be found in [3], [32]–[34], [47]–[51].

 35

Building on the works of Jackson and the Open Management Group, Auguston

describes the basic concepts for Monterey Phoenix as follows:

A view of the architecture as a high level description of possible system
behaviors, emphasizing the behavior of subsystems (components) and
interactions between subsystems. MP introduces the concept of event as
an abstraction of activity.

The separation of the interaction description from the components
behavior is an essential MP feature. It provides for a high level of
abstraction and supports the reuse of architectural models.

Interactions between activities are modeled using event coordination
constructs. The environment’s behavior is an integral part of the system
architecture model. MP provides a uniform method for modeling
behaviors of the software, hardware, business processes, and other parts of
the system.

The event grammar models the behavior as a set of events (event trace)
with two basic relations, where the PRECEDES relation captures the
dependency abstraction, and the IN relation represents the hierarchical
relationship. Since the event trace is a set, additional constraints can be
specified using set-theoretical operations and predicate logic.

The MP architecture description is amenable to deriving multiple views,
and provides a uniform basis for specifying structural and behavioral
aspects of a system.

MP supports automated and exhaustive (for a given scope) scenario
generation for early system architecture verification. The Small Scope
Hypothesis [Jackson 2006] states that most flaws in models could be
demonstrated on relatively small counterexamples. [33]

Monterey Phoenix is an expressive language that offers a way to describe the

world in terms of interactions: interactions between people, interactions between

machines, and interactions between people and machines. The information provided in

this section is a basic introduction to the MP event grammar. A more complete

description of the language and examples of models can be found in [33] and [50].

Figure 2 is extracted from the MP wiki hosted by NPS and illustrates the structure

of an MP event grammar rule. Since MP leverages high-level pseudo code, the MP user

has tremendous flexibility in selecting the words to represent behaviors.

 36

Figure 2. The Anatomy of the Event Grammar Rule. Adapted from [48].

Table 9 is also extracted from the MP wiki and illustrates event patterns, relating

natural language descriptions to their expressions as MP event grammar rules [48].

Table 9. Monterey Phoenix Event Patterns. Adapted from [48].

 37

The MP analyzer on Firebird utilizes the small scope hypothesis introduced by

Jackson:

Most flaws in models can be illustrated by small instances, since they arise
from some shape being handled incorrectly, and whether the shape
belongs to a large or small instance makes no difference. So if the analysis
considers all small instances, most flaws will be revealed… Key idea is
specification of a scope, which bounds the sizes of the signatures, and
exhaustive search for examples or counterexamples. [40, p. 15]

MP offers the opportunity to refine higher level system behavioral descriptions

into more detailed descriptions leading up to implementation in code, while maintaining

traceability across the models of the system and environment. This results in more

complete behavior descriptions of all relevant components and connectors. As explained

by Auguston and Whitcomb, “Event traces can be effectively generated from the event

grammar rules and then adjusted and filtered according to the composition operations

[COORDINATE and SHARE ALL] in the schema” [32].

MP does not replace system and software engineering enablers such as UML,

SySML, and DODAF, but complements them and emphasizes the value of using

automated tools for immediate model verification [32]–[34]. As discussed by Object

Management Group, the UML definition of a behavior is “a specification of events that

may occur dynamically over time” [31].

The representation of a behavior as an event in an executable MP model aligns

with the UML definition of a behavior. However, MP is used to not only model the

system under analysis, but also the behavior of elements in the environment, using the

same framework, which sets the conditions to re-use parts or all of the model. As

described by Auguston and Giammarco:

An event may be considered an abstraction of an activity, and may have
duration greater than or equal to zero. System behavior is modeled as a set
of events with two basic relations: precedence (PRECEDES) and inclusion
(IN). PRECEDES and IN are partial ordering relations. Unordered events
may occur concurrently. [48]

 38

Fortunately, tools such Firebird and Eagle6 are available and allow the model

author to execute the model and inspect the results using architectural views that can be

extracted from the executed MP model. These views help to portray aspects or elements

of the architecture that are relevant to the concerns that the view intends to address, and

to the stakeholder interested in those concerns. Each view is an answer to a question (or a

group of questions), and provides the rationale for the development of tools, patterns,

templates, and conventions needed to create the level of abstraction that reduces

complexity while retaining meaningful content [3], [32]–[34].

One of the earliest steps in the FP counting process is identifying the application

boundary. The ThreeMetrics methodology employing MP assists in unambiguously

identifying the boundaries and interactions of the system, user, and environment.

Function Point transactional function types can be thought of as markers of the

external boundary. Once the boundary and interactions have been described, the FPA

practice can be used to determine the unadjusted FP count.

Use cases, FPA, and behavioral modeling frameworks such as MP can help

stakeholders understand the technical and programmatic characteristics of the system and

environment, by effectively creating views that contain the information they need. The

ThreeMetrics methodology employing MP extracts analysis enablers from the model,

such as use cases, and informs programmatic metrics of effort and size estimates.

This research utilizes a subset of the MP tool set focused on ROOTs,

COORDINATE, and SHARE ALL. Once MP has been used to unambiguously describe

the behaviors of the system under analysis and its interactions with the environment, the

resulting MP descriptions of boundaries and interactions (represented by COORDINATE

and SHARE ALL in the MP schema) can be related to estimation and costing practices.

This will be discussed as part of the ThreeMetrics methodology in Chapter III of this

dissertation.

 39

F. ESTIMATES FOR INTEGRATION TESTING

Software testing is a challenging and resource intensive activity. Nowhere is that

more visible than during integration testing, when organizations as well as systems have

to interact. Sommerville states “software testing involves running an implementation of

the software with test data. You examine the outputs of the software and its operational

behavior to check that it is performing as required. Testing is a dynamic technique of

verification and validation” [10, p. 517].

Verification and validation are not synonymous terms, but they are symbiotic and

can effectively communicate the status and relevance of a system through its architecture

model. Boehm very simply but powerfully synopsized the difference “Am I building the

product right? Validation: “Am I building the right product?” [52].

Once individual component testing is complete, the next step is to integrate the

components into a system, and then assess whether or not the system behaves as

expected. The value of integration testing is its focus on information flowing across

interfaces to modules. The challenge is writing integration test cases that can confirm that

the observed behavior is the expected behavior. Pfleeger and Atlee note “the integration

is planned and coordinated so that when a failure occurs, we have some idea of what

caused it. In addition, the order in which components are tested affects our choices of test

cases and tools” [23, p. 390].

Many practitioners experience the challenge of testing within the schedule and

resource constraints of their organization. Testing is often not allocated the appropriate

amount of time for thorough investigation. Brooks provides “the following rule of thumb

for scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early

system test, 1/4 system test, all components in hand” [53, p. 20].

MP models generate all event traces within the given limit, and the resulting event

traces can be inspected to help developers identify undesired behaviors, and as blueprints

to create test cases. TutorialsPoint synopsizes the definition of a software test case: “A

test case is a document, which has a set of test data, preconditions, expected results and

 40

post conditions, developed for a particular test scenario in order to verify compliance

against a specific requirement” [54].

Additionally, a test case includes test steps, test data that supports what the test

case needs to achieve, expected results, and information about the environment. Once the

test case is executed, time is needed to analyze the results. An integration test case

addresses the interface and data flow between modules or systems, focusing on what

happens at the boundary.

The creation of integration test cases takes effort. The event traces generated from

an MP model provide solid detailed blueprints, which can be viewed as guidelines for the

creation of the integration test cases, and inform technical and programmatic decision

making.

The MP Analyzer on Firebird is an implementation of the MP event trace

generator, which utilizes the small scope hypothesis. The event traces are contained by

simulating a limited number of iterations, usually three or less [32].

Auguston and Whitcomb leveraging Jackson discuss MP as an executable

architecture model and state:

It is possible to obtain all valid event traces within a certain limit. Usually
such a limit (scope) may be set by the maximum total number of events
within the trace, or by the upper limit on the number of iterations in
grammar rules (recursion in the grammar rules can be limited in similar
ways). For many purposes a modest limit of a maximum 3 iterations will
be sufficient. This process of generating and inspecting event traces for the
schema is similar to the traditional software testing process. [32]

A generic description of all behaviors (the MP schema) is more difficult to

evaluate than an example of behavior (a particular event trace). Tools such as Firebird

assist in these evaluations by generating an exhaustive set event traces, usually for a

scope of one, that can then be inspected to and used to inform integration test cases.

In the COCOMO II output, integration and test costs are part of the phase effort

for construction. In this phase, breakdown of the total construction is 76% of the software

development effort. Using the waterfall lifecycle definitions for COCOMO II the

 41

breakdown is as follows: Product Design 17%; Programming 58%; Integration and Test

25% [55]. Once the UFP count is input into COCOMO II, 25% of the resulting

Construction phase output for schedule is used in the for this calculation. The work week

is assumed to be five days per week and eight hours per day for each staff person.

Assuming that six test cases per day can be executed, the number of test cases can be

executed in the allocated time for test and integration, is calculated. This does provide

information for next steps to inform decision making, both technically and

programmatically. The first step is to revisit the model and ensure that the behaviors of

the application are accurately captured. If the model is correct, then the next step is to

determine if there is any flexibility in the schedule and resources to support additional

testing. If the number of test cases is unrealistic, it becomes clear that only a subset of

event traces can be selected for testing.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

III. METHODOLOGY

The ThreeMetrics methodology applies elements of the function point counting

methodology to MP architecture models, to extract an unadjusted function point count

from MP models. It then uses the unadjusted FP count to calculate estimated effort thru

the COCOMO II cost methodologies. The MP model itself is a rich source of information

and can be used to extract event traces that inform integration test case development, as

well as views of instances of the architecture model that can be inspected for accuracy,

and facilitate communication with stakeholders. MP models are executable, taking

advantage of available automated tools, such as Firebird, which was used for this

research. The overall methodology illustrated in Figure 3 is synopsized in the following

steps, each of which is then discussed in more detail.

Figure 3. The ThreeMetrics Methodology Overview

44

Step 1: Determine stakeholder questions to be answered and gather existing

documentation

Step 2: Identify scope and application boundary

Step 3: Develop MP model

Step 4: Extract Data Functions count from MP model

Step 5: Extract Transactional Functions count from MP model

Step 6: Extract integration test cases and views from MP model

Step 7: Determine the Unadjusted Function Point (UFP) count

Step 8: Calculate effort estimate

Step 9: Finalize analysis and provide results to stakeholders

(1) Step 1: Determine stakeholder questions to be answered and gather
existing documentation

The first step of this methodology is to understand why the model is being

developed and what existing documentation is available to assist in understanding the

software system and the environment (everything but the system) with which it interacts.

Questions or groups of questions related to a software system exist for a spectrum of

stakeholders, as discussed in Chapter II Section C of this document. In order to address

these questions, the first step is to gather all available source information supporting what

the user expects the system to do.

Practitioners of the FP counting methodology recommend using any

documentation or architectural artifacts that may be available when performing a

functional size measurement, such as requirements documents, entity relationship

diagrams, interface agreements with descriptions of interfaces to/from other applications,

or any other supporting documentation that provides insights into what the application is

intended to do [9], [14]–[16].

 45

This approach is consistent with software and system engineering analyses. An

additional artifact that assists in defining the software system under assessment is the

information assurance documentation that defines the accreditation boundary of the

system, from which more detailed information of software components can be recovered.

One way to capture the expectations of the users is by examining and refining

functional requirements. Leveraging techniques from FP counting, functional

requirements are assessed in order to shape what the application is intended to do, from

the perspective of the user. The user of the application can be a human or another

machine. This translation of often ambiguous natural language requirements and

supporting artifacts into more precise FP counting representations is the most challenging

part of Step 1. Recall, the FP terms transactional functions, data functions, and functional

complexity determined by the number of DETs, FTRs, and RETs from Chapter II Section

B of this document. Using a combination of information from multiple FP counting

manuals, and leveraging the support documentation, the next sequence in Step 1 is to

begin to decompose ambiguous natural language of the functional requirements into

precise activities that can be related to FP transactional, data functions, and assist in

confirming the boundary of the application. This is the most challenging part of the

methodology.

(2) Step 2: Identify scope and application boundary

The information gathered in Step 1 assists with understanding what the

application is intended to do at a high level, from the perspective of the user. Step 2

utilizes this information to determine the scope of the count from the FP counting

methodology perspective, i.e. is it a Development Project FP count, an Enhancement

Project FP count, or an Application FP count. Most importantly, Step 2 utilizes this

information to identify the boundary of the application to be counted, a critical step in

any software or system engineering analysis when trying to distinguish the system under

analysis and the environment with which it interacts.

As discussed Chapter II Section B, understanding the type of project and FP count

from an FPA perspective assists in understanding which application is maintaining the

 46

data and confirming the boundary of the software system or component of the system to

be counted.

The supporting documentation of different software systems has various artifacts

to describe the systems, but these artifacts are often not consistent and may be

incomplete. However, at a minimum, a simple box and arrow type of architectural

representation can usually be recovered. Since the natural language of the functional

requirements may still be ambiguous, a quick inspection of the box and arrow

representation can be performed to confirm that the boundary of the application to be

counted is correct and clearly visible, that all currently known data functions are present,

and all currently known transactional functions are present. It also supports the

decomposition of the application to be counted into the ILFs and an Internal Abstracted

Application (IAA), which represents everything except the ILFs. The use of an IAA was

to represent behaviors between the ILFs, EIFs and IAA in order to account for the UFP

count for data functions, and will be discussed in Step 3.

Figure 4 illustrates the ThreeMetrics box and arrow simplified view. The red

dotted line represents the boundary. While this is high level architecture view does not

adequately represent the software system behaviors needed to extract the UFP count, it is

a practitioner’s tool to set the conditions to develop an MP model that does represent the

behaviors of the data functions, the behavior of the internal abstracted application, and

the behavior of the user in more detail. This view resonates with non-technical

stakeholders, who provide the go/no-go to proceed with additional analyses.

 47

Figure 4. ThreeMetrics Box and Arrow Simplified View

The next activity in this step is to further refine the behaviors of the application,

based on the documentation gathered in Step 1. By far the most difficult part of this

activity is fully understanding the behaviors of the software system, to determine the

DET counts, ensure that the RETs within an FTR are appropriately identified, and ensure

that the transactional functions (EI, EO, EQ) are also identified. Although more detailed

examples demonstrating this methodology will be provided later on in this document, for

the purposes of explaining the methodology, a short example will accompany the next

several steps.

When identifying candidate EIs, EQs, and EOs, it is critical to establish a

convention to keep track of all the information. As illustrated in Figure 5, adapted from

[56], one approach is to capture the name of the transactional function, the FTR

associated with it, and the DETs counted for that transaction. Consider the EQ named

State Drop Down, outlined by a blue dotted line. Associated with this EQ is the number

 48

of FTRs (1) and the number of DETs (2), and the identification of the FTR, in this case

Golf Courses ILF. For this EQ, the information is synopsized as EQ: State Drop Down,

(1,2), Golf Courses.

Figure 5. Tee Time Generic Box and Arrow View. Adapted from [56].

This EQ was identified from the source information associated with the Tee Time

application, which is described in more detail in Chapter IV. A representative screen for

the application, Golf Courses List, is illustrated in Figure 6. On this screen and from the

narrative accompanying the screen in the source information, the State Dropdown EQ

was identified, and the behaviors associated with this transactional function were also

identified, and counted as DETs.

 49

Figure 6. Golf Courses List Screen. Adapted from [56].

For EQ: State Drop Down, the behaviors include: (1) Click on state arrow, (2)

State list display returned. There is one FTR (Golf Courses ILF), and 2 DETs (Arrow

Click, State field) identified. Therefore, the user is interacting with the application,

querying for information that is resident in the Golf Course ILF. The information is then

displayed back to the user, on the screen. This process is continued until all transactional

functions are clearly identified.

Similarly, for data functions, the Record Element Type associated with an ILF or

EIF is elicited from the supporting documentation gathered in Step 1. Each ILF and EIF

is assigned a name, and the data elements associated with each are delineated and

counted. Any logical groupings of data from the user’s perspective, internal to the EIF or

ILF, is documented as an RET. In this example, there is one RET and 11 DETs

represented in Figure 5 as Golf Courses ILF (1, 11).

In a manual unadjusted FP count, the next step would be to determine the

functional complexity based on functional complexity tables provided by the IFPUG

counting manual [9], such as Table 4 for an EQ.

To keep track of all this information, Table 10 provides a synopsis of the

elementary process (EP), in this case an EQ, described as State Drop Down, which

 50

references the Golf Course ILF (I). There is 1 FTR and 2 DETS, represented as (1, 2).

Therefore, the complexity (Complex) is considered Low, and that corresponds to 3 UFPs

for this EQ.

Table 10. UFP Count for EQ State Drop Down

(3) Step 3: Develop MP Model

Once the application boundary is drawn (see the red dotted line) and candidate

transactional and data functions are identified, the conditions are set to enrich the box and

arrow representation with high level behavioral descriptions of the software system being

counted, derived from the source information in Step 1. Figure 5, while helpful, soon

becomes unwieldy, containing so much information that it defeats its original purpose of

simplification. Although this view is an initial representation of the behaviors of the

software system, representing the model in MP was much more efficient.

MP events can be represented in pseudocode, using formalisms to refine the event

descriptions. MP events include interactions between actors (e.g., ROOT User, ROOT

ILF). UFPs represent interaction abstractions and can be extracted from COORDINATE

and SHARE ALL MP constructs. The descriptions of interactions can be captured in a

high level MP COORDINATE that effectively says “do something, and then something

else happens” in pseudocode. Hidden within the high level COORDINATE are all the

other interactions that are represented in FPA by DETs and FTRs, referenced to assess a

complexity. The structure of events visible in an MP model provides the source for

assigning weights. The nested COORDINATE will have composite events, and the

number of composite events will affect the weight. The weights can be derived from the

complexity of interactions and FPA functional complexity rating. These calculations can

 51

be done by automated tools that relate the MP model to COCOMO calculations, such as

http://csse.usc.edu/tools/MP_COCOMO [57].

Recall, the MP terminology from Chapter II Section E. User, ILFs, EIFs, and an

IAA in Figure 4 are identified as ROOTs. The ILFs, EIFs and User each interact with the

Internal Abstracted Application ROOT, but do so in slightly different ways. The

interaction of the ROOTs is represented by composition operations COORDINATE and

SHARE ALL.

The use of an IAA was to represent behaviors between the ILFs, EIFs and IAA to

account for the UFP count for data functions. Had the interactions been between the user

and the ILFs and EIFs, these interactions would have accounted for the contributions of

the transactional functions to the UFP count, but not those of the data functions. SHARE

ALL was chosen to represent interactions between the IAA and ROOTs for data function

types. It should be noted that if enough information were available on the data functions,

then nested COORDINATE could be also used to represent the interactions between the

ILF or EIF and the IAA.

COORDINATE was chosen to represent the high level interactions (EI, EO, EQ)

of the transactional functions, and then nested interactions (nested COORDINATE) to

represent the DETs that determine the functional complexity rating. This functional

complexity rating corresponds to an UFP count in the IFPUG tables, and was used as

multiplied with the COORDINATE, resulting in the same UFP count as a manual UFP

count for that transactional function. The initial UFP count extracted from the MP model

and the manual UFP count are very close, if not identical. However, the MP executable

model is amenable to stepwise refinement, and the count of COORDINATEs and

SHARE ALLs can be extracted from the model using manual inspection and automated

tools. This will be discussed in more detail in Step 7.

Continuing with the EQ State Drop Down transactional function type, the MP

schema for this transactional function type and the nested operations associated with

DETs is described in Figure 7.

http://csse.usc.edu/tools/MP_COCOMO

 52

Figure 7. MP Schema Description for EQ State Drop Down Example

The naming convention of the ROOTs is to assist with managing the complexity

of the descriptions of ROOT behaviors and the interactions between the ROOTs. For

example, the user interacts with the TT Internal Abstracted Application, to inquire on

data that is in the Golf Courses ILF. ROOT TT_GC_ILF represents the abstracted

combination of the Golf Courses ILF and the TT Internal Abstracted Application

(referred to hereafter as TT), both of which are internal to the Tee Time application

boundary.

 53

(4) Step 4: Extract Data Functions count from MP model

The behaviors of an ILF or EIF data function can be represented as interactions

with the internal abstracted application using nested COORDINATE if sufficient

information is available, or SHARE ALL if information is incomplete or sparse.

COORDINATE requires two events and SHARE ALL requires a single shared

event. SHARE ALL is the simplified form of interaction, when who initiates the

interaction and who is the recipient is not relevant. The MP representation of data

function type interaction is illustrated in Figure 8 for SHARE ALL.

Figure 8. MP Schema For Data Function: SHARE ALL

A similar representation using COORDINATE is illustrated and in Figure 9.

Figure 9. MP Schema For Data Function: COORDINATE

The MP schemas illustrated in Figures 8 and 9 can be manually inspected. There

is one SHARE ALL in Figure 8 and one COORDINATE in Figure 9. The

COORDINATE or the SHARE ALL corresponds to one data function type, in this case

Golf Courses ILF. Once the number of COORDINATEs or SHARE ALLs are extracted

 54

from the schema, the IFPUG tables are used to determine the functional complexity

rating and corresponding UFP size.

(5) Step 5: Extract Transactional Function Count from MP model

Each EI, EQ, or EO transactional function is represented in the MP model by a

COORDINATE composition operation. The number of interactions nested within the

COORDINATE are directly related to the functional complexity and size values in the

IFPUG tables.

For example, if an EQ = 1 COORDINATE, then the next step is to inspect the

number of interactions within that COORDINATE. If the number of interactions between

one IAA (ILF/EIF) ROOT combination and the User is 15 or less, this corresponds to a

functional complexity of Low.

Multiplying the EQ by the functional size value (in this case 3 for Low) will equal

the number of UFPs for that EQ. This requires a specific understanding between the

parent COORDINATE and the nested interactions representing the DETs. Otherwise, a

generic approach is to arbitrarily assign a functional complexity value of average to the

transactional functions, until a more refined understanding of the behaviors can be made.

(6) Step 6: Extract Integration Test Cases and Views from MP Model

MP provides a rich source of information that informs effort. The UFP count

extracted from an MP model will be discussed in Step 7.

All executable architecture models, including MP, must be inspected, tested, and

debugged before users can extract information from them. Once the model is considered

correct, then there is a greater degree of confidence that all scenarios and use cases

generated by the model are also correct. Each scenario or use case can then inform a test

case, to support implementation.

MP can be used to automatically produce event traces, which represent examples

of behaviors (e.g., scenarios, use cases if the environment is included). Recall that an

event trace represents an example of a particular execution of the system extracted from

the architecture that is specified by an MP schema. In the case of executable MP models,

 55

all event traces within a given limit can be generated. Auguston states that “usually such

a limit (scope) is set as the upper limit on the number of iterations in grammar

rules” [33].

For some MP models, Scope 1 is sufficient because increasing the scope will

result in a large number of event traces that may not show anything new or notable, and

will not improve chances of exposing errors in testing. The executable model may take

too long to run, resulting in a poor return on investment of time and effort. Auguston and

Whitcomb leverage Jackson’s work on the small scope hypothesis and observe

in the case of MP models it is possible to automatically generate all event
traces within the given scope (exhaustive testing). Careful inspection of
generated traces (scenarios/use cases) may help developers identify
undesired behaviors. Usually it is easier to evaluate an example of
behavior (particular event trace) than the generic description of all
behaviors (the schema). The Small Scope Hypothesis states that most
errors can be demonstrated on relatively small counterexamples. [3]

An MP schema describes all behaviors generically, whereas as an instance of a

behavior is represented in an event trace. Tools such as Firebird assist in the evaluation of

behaviors by generating an exhaustive set of event traces for a scope. The event traces

can individually inspected to determine which ones may be best suited to serve as a

blueprint for integration test case generation.

As an example, the MP schema for EQ State_drop_down was executed using

Firebird, with an event trace illustrated in Figure 10 that was extracted from the model.

This is one transactional function from the It’s Tee Time [56] example, which will be

discussed in Chapter IV.

 56

Figure 10. MP Event Trace

The event trace in Figure 10 illustrates the behaviors of User and TT_GF_ILF and

the interactions between them, which can be used to identify the steps in a test case. For

this event trace, the user’s input results in two events: The user clicks the arrow for state

drop down (Click_state_arrow_dropdown); and the user should receive state list display

(Receive_state_list_display). Receive state list display is a description of the expected

system’s output.

Brooks observed that 25% of total effort is dedicated to integration testing [53].

Wolff indicates that approximately six integration tests per day can be executed for a

large application, such as an electronic commerce system [58]. This does not include the

amount of time required to create or analyze the test case.

The amount of time for integration test case construction varies by the complexity

of the interface being tested and the identification of test data. The time to create

integration test cases ranges from several hours for a simple test case to several days for a

more complicated one. Estimates are not only numbers; they provide useful information

for informed decision making regarding the planning, implementation overall, and

 57

management of a real software project. If 500 integration test cases are needed to ensure

all behaviors of a system are covered, but an organization is resource-constrained or

schedule-constrained and can only execute 50 integration test cases, which integration

test cases should be selected? The process and criteria for selecting a subset of test cases

is a topic for future work.

(7) Step 7: Determine the Unadjusted Function Point (UFP) Count

When specificity related to the application is unclear, one approach is to initially

assign an average functional complexity rating to all transactional and data function

types. Another approach is to consider how transactional and data function type

complexity are rated in similar applications and assign that complexity to the application

of interest. When there is clear information associated with the application, the functional

complexity and size tables can be applied directly. The total UFP is the sum of the

transactional function type UFP count and the data function type UFP count.

Total UFP = Total Data Function Type UFP Count + Total Transactional Function Type
UFP Count

Continuing with the Tee Time example and focusing on the Golf Courses ILF

(GC_ILF), on SHARE ALL is identified through manual inspection of the MP schema in

Figure 8. From the source information that will be discussed in the complete example in

Chapter IV, there is one RET and 1–19 DETs associated with this ILF, so that the

functional complexity is Low, as illustrated in IFPUG Table 11.

Table 11. Functional Size for Data Functions. Adapted from
[9, Sec. 1, p. 13, Table 2].

 58

Table 12 illustrates that a functional complexity of Low for an ILF corresponds to

a functional size of 7 UFP in a manual count.

Table 12. Functional Complexity For ILF and EIF. Adapted from
[9, Sec. 1 p. 13 Table 1].

Using that size, multiply the SHARE ALL by the # UFP/SHARE ALL, where the

UFP/SHARE ALL is obtained from the functional size, in this case 7.

Golf Courses ILF = (1 SHARE ALL) * 7 UFP/COORDINATE = 7 UFPs

The same approach can be applied for the MP schema in Figure 9. Inspecting this

schema shows that there is there is one COORDINATE. Based on the source information

in Chapter IV, there is one RET and 1–19 DETs associated with GC_ILF, so that the

functional complexity is low and from Table 11, and the functional size is 7 UFP from

Table 12.

Golf Courses ILF = (1 COORDINATE) * 7 UFP/COORDINATE = 7 UFPs

The data functions pose an interesting challenge. If minimal information is

available regarding the ILF or EIF, one approach to estimating the size is to assume an

 59

average functional complexity and associated functional size for an ILF and EIF (10 and

7 UFP, respectively) from Table 11 and 12. This is applicable whether using SHARE

ALL or COORDINATE. However, if the source information associated with an ILF or

EIF is sufficient to describe the number of RETs and the number of DETs, a nested

COORDINATE can be used for those data functions adequately described. Otherwise,

defaulting to SHARE ALL with an average functional complexity and size until more

information is available is the preferred starting point. The full It’s TeeTime example in

Chapter IV includes sufficient information to represent data function behavior using the

nested COORDINATE composition operation.

The UFP for transactional function types, such as the EQ: State Drop Down, also

begin by manual inspection of the MP schema. In Figure 9, there is one COORDINATE,

and nested within the COORDINATE are two ADDs. The COORDINATE corresponds

to one transactional function, in this case an EQ. Each of the ADDs corresponds to a

DET. From the source information and its representation in Figure 5, there is one FTR,

Golf Courses ILF. Once the number of COORDINATEs and DETs are extracted from the

schema, the IFPUG tables can be used to identify functional complexity and size for this

transactional function.

As illustrated in Table 13, 0–1 FTRs and 1–5 DETs correspond to a functional

complexity rating of Low for this EQ. A Low functional complexity rating corresponds to

a functional size of 3 UFP. The EQ COORDINATE is then multiplied by the #

UFP/COORDINATE, where the # UFP/COORDINATE is obtained from the functional

size for each transactional function, in this case an EQ.

Table 13. Functional Complexity and Size for EQs. Adapted from
[9, Sec.1, p. 19, Table 7 and Table 8].

 60

EQ State Drop Down = (1 COORDINATE) * 3 UFP/COORDINATE = 3 UFPs

For an EI, EQ, or EO represented by a COORDINATE, once the number of

interactions nested within the COORDINATE (one ADD for each DET) is determined, it

can be related to the functional size.

Recall, the IFPUG counting tables for functional complexity and functional size,

illustrated in Table 13.

One approach to relate the data functions to the MP architecture’s model language

would be to use SHARE ALL for interactions between the internal component of the

application being measured and the External Interface Files and the Internal Logical

Files.

As discussed earlier, when insufficient information is known about the application

to be measured, an initial UFP count can be obtained by assuming an ‘average’ functional

complexity for transactional and data functions. The functional complexity and functional

size values for average are not the same for EI, EO, EQ, ILF and EIF. If each is

represented by a COORDINATE or SHARE ALL, one approach would be to average the

EO, EI, and EQ complexity and sizing values from the IFPUG tables and use them for

each COORDINATE associated with an EI, EO, EQ, and for each SHARE ALL

associated with an ILF or EIF. For the functional size of a data function (i.e., ILF or EIF)

consider:

Average = 8.5 i.e., (10+7)/2

Use the average functional size value of 8.5 for any data function interaction

captured by SHARE ALL.

The same can be said for the transactional functions, where EI and EQ have the

same value and EO differs:

Average = 4.5 i.e., (4 +5+4)/3

Use the average functional size value of 4.5 for every transactional function

described by a COORDINATE.

 61

(8) Step 8: Calculate Effort Estimate

As discussed in Chapter II Section A of this dissertation, COCOMO II can utilize

UFP counts or software lines of code as an input to estimate effort. UFP counts can be

transformed into lines of code based on the software implementation language used. This

can be done manually leveraging the equations in [4] and [5], or by using the COCOMO

II automated tool [57]. The implementation in [57] has been extended by Madachy and

Auguston to not only accept an UFP direct input, but also an MP file from which the UFP

count is extracted.

Figures 11 and 12 illustrate the options available for the MP-COCOMO II

extended implementation, where an UFP can be manually inserted into the model or a

MP .mp file can be uploaded. There are many options available as inputs to the

COCOMO II model. The options used for this research are discussed in this section. A

more complete description of the input options can be found in [4].

For Software Size Sizing Method, the FP selection represents leads to the

unadjusted function point input. Software sizing options include Sizing Method and Input

Method. The sizing method can be either FPs or SLOCs. Input Method can be Direct or

File Input.

If Input Method selected is Direct, then the number of UFPs are inserted in the

corresponding field. A language is then selected from options including Basic, C,

Database-default, JAVA, PERL, 3rd Generation Language. JAVA was selected for this

research.

If Input Method selected is File Input, then the option of Select Input File is

offered and an MP schema file with extension .mp can be uploaded.

Once the UFP are inserted and a language option is selected, then the other inputs

to the model can be selected. For this research Nominal was selected for all options,

Maintenance selected was off, and a software labor rate of $20,000 was used.

Consider the following example for a Direct input of 75 UFPs extracted from an

MP schema. Options selected are intended to result in a nominal level of effort.

 62

Additionally, Maintenance is off, and software labor rate is assumed to be $20, 000. The

resulting estimate is illustrated in Table 14 Nominal Option Estimates.

Table 14. Nominal Option Estimates

Figure 11 illustrates all of the nominal options selected and Maintenance off, for a

direct input of 75 UFPs using the JAVA implementation language.

Figure 11. Nominal Effort Options Selected, Maintenance Off

 63

The results are captured in Figure 12, where Effort is 13.4 Person-months,

Schedule is 8.6 months, Cost is $268,205, and Total Equivalent Size is 3975 SLOC.

Figure 12. Nominal Options Selected, Maintenance Off, Results

Recall that the SLOC can be calculated manually from an UFP count for a given

software language. For this example, using the values in Table 2 for JAVA, (75 UFPs *

53 SLOC/UFP) = 3975 SLOC. This is the same number from the COCOMO II model

results in Figure 12.

 64

(9) Step 9: Finalize Analysis and Provide Results to Stakeholders

As illustrated in Table 11, for every stakeholder, there is at least one distinct way

of representing the answers to his or her question. Each stakeholder is interested in a

slightly different representation of the same information, and each representation must

accurately represent a segment of the whole set of information. Some of this information

can be represented in well-known architecture views such as box and arrow diagrams,

activity diagrams, or sequence diagrams. Other information can be represented as high-

level pseudo code or ranges of cost estimates. What is important is the accuracy and

traceability of the information in each representation and its ability to communicate with

a stakeholder.

One of the criticisms of UML is that its views can be created independently of

each other, with no guarantee that a change in one view is reflected in another. A similar

criticism has been levied against DODAF. However, imagine an architecture modeling

world without these commonly understood languages and frameworks. UML and

DODAF provide mechanisms to capture and represent information in a way that allows

multiple stakeholders to reason about complicated concepts. MP offers a similar

capability. It does not compete with UML or DODAF, but enhances the toolset available

to the architectural modeling community. As an executable architecture model, the MP

schema and resulting event traces can be inspected and debugged until the model is

considered correct. MP Analyzer on Firebird exports views of the executed event traces,

including sequence diagrams and a box and arrow view that assisted in this research.

Each step in the application of the ThreeMetrics methodology results in the

representation of information that can be used to inform multiple stakeholders. Figure 13

is an example of an MP event trace for EQ: State Dropdown, representing a sequence

diagram that highlights the interaction between roots.

 65

Figure 13. Event Trace View: Sequence Diagram

Figure 14 is an integrated view of the manual and MP schema UFP count

calculation. The left side is an example of the UFP done through the current FPA

counting methodology and the calculation of the UFP for the EQ transactional function.

The right side of Figure 14 shows the representation of the EQ transactional function in

an MP schema, with a COORDINATE and ADDs representing the transactional function

and the complexity of transactional function EQ. Using both approaches, the UFP count

for the EQ transactional function is the same.

 66

Figure 14. Integrated View of Manual and MP Schema UFP Count Calculation

Recall that Figure 7 is the high-level pseudocode representation of this

information. The box and arrow view in Figure 5 where EQ: State Dropdown highlighted

is another view of the same information. The COCOMO II model output represents

additional information on person-month effort, Schedule, and Cost. Each representation

conveys relevant information to different stakeholders.

For more information on the ThreeMetrics Methodology that has been

communicated to a broad audience, see previous works in [59]–[68].

 67

IV. IMPLEMENTATION OF METHODOLOGY (EXAMPLES)

This chapter applies each step of the ThreeMetrics methodology described in

Chapter III to three examples. The Spell Checker and Course Marks examples are

derived from source information from Fenton and Bieman [69]. Variations of the It’s Tee

Time application, or simply Tee Time, are derived from source information from Q/P

Management group [56]. These examples were selected because they contain UFP

answer keys that can be compared to the UFP count extracted from the MP model to

validate the ThreeMetrics methodology.

The Spell Checker implementation shows that the ThreeMetrics methodology can

successfully extract an UFP from an MP model. The source information provided by this

example is minimal, but does include an UFP answer key that includes functional

complexity and size values for transactional and data function types.

The Course Marks implementation further demonstrates that the ThreeMetrics

methodology can extract an UFP count from an MP model. The source information

provided is minimal, and it does include an UFP answer key, functional complexity, and

size values for transactional and data function types.

The Tee Time implementation highlights the value of detailed source information,

which allows the exploration of four Courses of Action (COAs) to determine the UFP

count using the ThreeMetrics methodology. Each COA increasingly applies details from

the Tee Time source information to develop the MP model:

COA 1:

• Assumes limited source information and therefore average functional
complexity and size values for each transactional and data function.

• Inspects model for COORDINATE and SHARE ALL.

COA 2:

• Applies additional detail from source information to develop the MP model.

• Assumes average functional complexity and size values for each transactional
and data function.

 68

• Inspects model for EI, EO, EQ, ILF, and EIF descriptive terms associated with
COORDINATE and SHARE ALL.

COA 3:

• Applies additional detail from source information to develop the MP model.

• Inspects MP model for each COORDINATE and for each ADD to determine
functional complexity and size for transactional functions.

• Inspects model for SHARE ALL and assumes average functional complexity
and size for data functions.

COA 4:

• Applies all detail from source information to develop the MP model.

• Inspects the MP model for each COORDINATE and for each ADD to
determine functional complexity for each transactional and data function.

The ThreeMetrics methodology is applied to each example in Sections A, B, and

C. Since each example includes an UFP answer key in the source information, the

ThreeMetrics UFP is then compared to the UFP answer keys to validate the methodology.

Taken together, these implementation examples show that the ThreeMetrics

methodology is able to extract an UFP count from MP’s executable architecture models

for use in software cost estimation. Additionally, the ThreeMetrics methodology uses

event traces to inform integration test estimates and decision making, and each step of the

methodology provides meaningful information to stakeholders.

A. SPELL CHECKER EXAMPLE

(1) Step 1: Determine stakeholder questions to be answered and gather
existing documentation

The Spelling Checker example for the UFP estimate is derived from Fenton and

Bieman. The source information was limited, and it includes the diagram reproduced in

Figure 15, an UFP answer key, and the following Spell Checker specification

information:

 69

The checker accepts as input a document file and an optional personal
dictionary file. The checker lists all words not contained in either of these
files. The user can query the number of words and the number of spelling
errors found at any stage during processing. [69, pp. 353]

Due to the limited information in the specification, additional assumptions were

made to represent the behaviors of the application in the MP model. The checker scans

each word of the document. The checker checks if each word is in the spell checker’s

dictionary. If it is, then the word is spelled correctly. If it is not, the application can check

if the word is in the optional personal dictionary. If it is available in the personal

dictionary, then the word is spelled correctly. If it is not spelled correctly based on the

check with the personal dictionary, the checker provides a set of possible suggestions.

Figure 15. Spell Checker Example. Adapted from [69].

(2) Step 2: Identify scope and application boundary

Based on the source information, the boundary of the application to be counted is

identified and highlighted by the red dotted line in Figure 16. Dictionary ILF, Document

EIF and Personal Dictionary EIF represent data functions. Transactional functions are

represented by EI, EQ, and EO. Additionally, the ThreeMetrics methodology Box and

Arrow view serves as a translation point between a function point counting architectural

view and an MP architectural view, combining enough relevant information of each

methodology to show the initial relationship between both methodologies. A

corresponding MP term is identified and associated with each data function and

 70

transactional function, using high-level pseudocode descriptions to refine the natural

language descriptions and behaviors from the source information.

The IAA for this example is identified as Spell Chk. The IAA and the Dictionary

ILF, are internal to the boundary of the application being counted.

Figure 16. ThreeMetrics Box and Arrow View: Spell Checker

(3) Step 3: Develop MP Model

Once the box and arrow view assists in visualizing the boundary, the actors, the

initial behaviors, and interactions, this information can then be further refined by

capturing it in an MP model.

The MP schema includes ROOTs for each Actor, the IAA named Spell Chk, and

the composition operations that set the conditions to extract the UFP consistent with the

methodology identified by the IFPUG counting process. The MP schema

Spellchecker_3215 includes the entire model with several highlighted optional behaviors,

in a format consistent with FP counting. Since there was such little source information

provided, many assumptions were made in order to describe ROOT behaviors in the

 71

model. The MP model was executed using the MP Analyzer on Firebird, resulting in

3,215 event traces.

The complete MP model can be found in Appendix A of this dissertation. An

extract is included below to highlight the behaviors of the actors and their interactions.

The user and the spell checker’s IAA behaviors are described in the following

segment of the MP schema.

ROOT User: (* provide_document_file_name
 [provide_personal_dictionary]
 [inquire_on_number_of_processed_words]
 [check_number_of_processed_words]
 [inquire_on_number_of_errors_so_far]
 [check_number_of_errors_so_far]
 read_spelling_report
 update_document_file
 read_errors_message
 [update_personal_dictionary]
 [receive_misspld_wrd_rpt]
 *)
 no_more_errors
 end_of_work;

ROOT Spell_chk : (* read_document_file
 Process_document
 [send_number_of_processed_words]
 [report_number_of_processed_words]
 [send_number_of_errors]
 [report_number_of_errors]
 provide_spelling_report
 [report_misspld_wrd]
 *) ;

 Process_document: read_dictionary
 [read_personal_dictionary]
 [spelling_errors_detected]

 ;

The EI transactional function type interaction between the user and the Spell_chk

IAA is captured in the following EI COORDINATE.

 72

/* EI: Doc_filename */

COORDINATE $pdoc: provide_document_file_name FROM User,
 $rdoc: read_document_file FROM Spell_chk

DO ADD $pdoc PRECEDES $rdoc;

OD;

 The interaction between the Spell_chk IAA and the Dictionary ILF is

captured using SHARE ALL.

ROOT Dictionary: (* read_dictionary *);

Spell_chk, Dictionary SHARE ALL read_dictionary;

The .wng files, containing the MP schema and event traces, for the spell checker

model will be available on the Monterey Phoenix wiki hosted by the Naval Post Graduate

School [47].

(4) Step 4: Extract Data Functions Count from MP model

When there is limited source information available, the data functions can be

represented in the MP schema using the SHARE ALL composition operation. This

describes the interactions between the IAA and the EIF (Document File and Personal

Dictionary) and the ILF (Dictionary).

Through manual inspection of the MP schema for the spell checker example, 3

SHARE ALLs are counted. Since minimal source information is available, the functional

complexity is assumed to be average.

(5) Step 5: Extract Transactional Functions count from MP model

Through manual inspection of the MP schema for the spell checker example,

seven COORDINATEs are counted. These seven COORDINATES represent

transactional function types (EI, EO, EQ). Since minimal source information is available,

the functional complexity is assumed to be average.

 73

(6) Step 6: Extract integration test cases and views from MP model

Extracting event traces (i.e., use cases) from an MP schema sets the conditions to

verify the model either through manual inspection of the event traces or by leveraging

automated tools. The use cases serve as a valuable blueprint for the construction of

integration test cases, which can then be used to support integration test estimates.

For this example, Scope 1 was used and considered sufficient. The event traces

were inspected and increasing the scope did not show anything new or notable, and

would not improve chances of exposing errors in testing.

Recall that the activities associated with a test case includes test steps,

preconditions, test data that supports what the test case needs to achieve, expected results,

post conditions, information about the environment, infrastructure to support execution of

the tests, and analysis of the test results. The event traces generated from an MP model

provide solid detailed blueprints, which can be viewed as guidelines for the creation of

the integration test cases.

Three examples of the 3215 event traces are illustrated in Figures 17–19. Figure

17, Event Trace #1 of 3125, illustrates very simple but valid behaviors and interactions.

Figure 17. Firebird Spell Checker Event Trace 1 of 3215

 74

Figure 18, Event Trace #1612 of 3215, illustrates an increasing number of

behaviors and more complex interactions.

Figure 18. Firebird Spell Checker Event Trace 1612 of 3215

 75

Figure 19, Event Trace #2311 of 3215, illustrates additional behaviors and

interactions that are part pf the complete set of event traces.

Figure 19. Firebird Spell Checker Event Trace 2311 of 3215

Recall, Brooks indicated he has “successfully used the following rule of thumb

for scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early

system test, 1/4 system test, all components in hand” [53, p. 20].

.25 x Total effort = Estimate for integration testing

 76

As discussed by Wolff, approximately six integration tests per day can be

executed for a large application, such as an electronic commerce system [58, p. 16]. This

does not include the amount of time required to create the test case.

Integration test estimates must account for test preparation, including the creation

of the test cases and data sets or ensuring that the test environment is ready. The tests do

not account for the time required to analyze the results of running the test cases.

Additionally, the amount of time required to execute a test case is influenced by the

method of execution, i.e., automated using scripts or manually executed, or a

combination of both techniques. For several large DOD releases, typically between three

and fifteen integration tests per day have been executed, depending on the complexity of

the test and the amount of automation. For this research, the value of six test cases per

day is used.

In the COCOMO II results that will be discussed in Step 8, the Integration and

Test costs are extracted from the phase effort for Construction. In this phase breakdown

the total Construction is 76% of the software development effort. Using the waterfall

lifecycle definitions for COCOMO II the breakdown is as follows: Product Design 17%;

Programming 58%; Integration and Test 25% [55].

As is illustrated by Figure 21 in Step 8, the Construction phase is allocated 4.8

months of schedule. Twenty-five percent of that time is 1.2 months. Those 1.2 months

corresponds to 24 days (assuming 5 days per week and 8 hours per day for each staff

person). Assuming 6 test cases per day, then 144 test cases can be executed in the

allocated time for test and integration.

There are 3215 event traces generated in the MP model. Not including the time

required to create and analyze the test cases, this would require over 535 days to execute

testing. Upon inspection of the event traces, some are significantly less complicated than

others, so test case generation and execution based on each event trace will not require

the same amount of effort.

This does provide information for next steps to inform decision making, both

technically and programmatically. The first step is to revisit the model, and ensure that

 77

the behaviors of the application are accurately captured. If the model is correct, then the

next step is to determine if there is any flexibility in the schedule and resources to support

additional testing. Since 535 days is not supportable given current schedule constraints,

only a subset of event traces can be selected for testing.

If schedule does not support more than 144 test cases, then the event traces will

need to be inspected and a subset selected for use in the creation of test cases. The criteria

to determine what subset of event traces to select is a topic for future work.

(7) Step 7: Determine the Unadjusted Function Point (UFP) count

In the case of the example in [69], limited source information is available; so, an

assumption is made that the functional complexity for both data and transactional

function types corresponds to “average.”

The ILF and EIFs identified for this example are:

• ILF: Dictionary

• EIF: Document_file

• EIF: Personal_Dictionary

Based on the tables from the IFPUG, an average functional complexity for an ILF

corresponds to 10 UFPs, and an average functional complexity for an EIF corresponds to

7 UFPs.

Note that in the UFP calculation contained in the answer key to the example in

[69], the UFP for data functions is shown to be

(2 EIF) x (10 UFP/EIF) + (1 ILF x 7 UFP/ILF) for a total of 27 UFP

According to the functional complexity and functional size values for averages

from the IFPUG tables, the UFP count should be:

(2 EIFs) x (7 UFP/EIF) + (1 ILF) x (10 UFP/ILF) = 24 UFP

This difference is noted to point out that the UFP count used for data functions in

this analysis will be 24 UFP.

 78

For EI, EO, and EQ, each associated COORDINATE in the MP schema

represents a transactional function, resulting in seven transactional functions for this

example. For the transactional function UFP count, due to the limited source information

available for this example, once again an average functional complexity rating is

assumed. According to the IFPUG tables, the corresponding size for an average

functional complexity rating is 4 UFPs for an EI, 4 UFP for an EQ, and 5 UFPs for an

EO. The transactional functions are:

• EI: Doc_filename

• EI: Pers_diction_file

• EQ: Inquire_errors_so_far

• EO: No_ers_so_far_msg

• EQ: Inquire_words_processed

• EO: No_wrds_prosd_msg

• EO: Misspld_wrd_rpt

2 EI x 4 UFP/EI = 8 UFP

2 EQ x 4 UFP/EQ = 8 UFP

3 EO x 5 UFP/EO = 15 UFP

This results in a total of 31 UFPs for transactional functions. The total UFP count

for the Spell Checker example is 31 UFPs + 24 UFPs = 55 UFPs. Recall that for this

example, the decision was made to use 24 UFPs for the data functions, so the total UFP is

55 and not 58 as noted in [69].

One of the challenges of inspecting the MP schema is how to address the

difference in average functional complexity for an ILF and EIF, if the pseudocode

descriptions in the model do not include an ILF or EIF to distinguish between them. One

approach is to average the ILF and EIF functional size and suggest that the SHARE ALL

functional complexity and size for a data function corresponds to:

 79

Low = (7+5)/2 = 6

Average = (10+7)/2 = 8.5

High = (10+15)/2 = 12.5

This would result in (3 SHARE ALLs) x (8.5 UFP/SHARE ALL) = 25.5 UFPs

The same approach used for data functions can be applied to transactional

functions, where EI and EQ have the same value and EO differs:

Low = (3+3+6)/3 = 3.5

Average = (4 +5+4)/3 = 4.5

High = (6+7+6)/3 = 6.5

This would result in (7 COORDINATEs) x (4.5 UFP/COORDINATE) = 31.5 UFPs.

Assuming an average complexity, the UFP counts for the data and transactional function

types are:

7 COORDINATEs x 4.5 = 31.5 UFP

3 SHARE Alls x 8.5 = 25.5 UFP

This results in a total count of 57 UFPs, which is slightly higher than the 55 UFPs used

for this analysis. The remaining challenge is how to assign the low, average, and high

functional complexity and size values to the number of COORDINATES, nested

COORDINATES and SHARE ALLs, when the requirements are still maturing and the

available information is insufficient to accurately describe the DETs, the number of

FTRs, and the number RETs.

 80

(8) Step 8: Calculate Effort estimate

Using the total count of 55 UFPs, directly inputting into the COCOMO II tool,

and selecting JAVA implementation language, Maintenance Off and a Cost per Person-

Month of $20,000, the nominal estimates are synopsized in Table 15, and supported by

Figures 20 and 21.

Table 15. Nominal Effort Estimates

Figure 20 illustrates the options available in the COCOMO II model. For this

analysis, nominal inputs were selected with 55 UFPs manually inserted into the model.

Figure 20. Nominal Effort Options Selected, Maintenance Off

 81

Figure 21 illustrates the results of the COCOMO II model for 55 UFPs manually

inserted into the model.

Figure 21. Nominal Effort Options Selected, Maintenance Off, Results

(9) Step 9: Finalize analysis and provide results to stakeholders.

As discussed earlier, each stakeholder is interested in a slightly different view of

the same set of information. However, these views must be consistent with each other,

accurately representing a subset of the whole set of information.

Each step of the ThreeMetrics methodology provides meaningful information to

stakeholders. Programmers and engineers will appreciate the high-level pseudo code of

the MP model in Appendix A, since it describes the behaviors of the application and its

internal and external interactions. System and software engineers will appreciate the box

and arrow format of the information in Figure 16. Cost analysts and program managers

will appreciate the results of the COCOMO II model in Figure 21, as input to resourcing

 82

requirements presented with each instance of the architecture model. Testers will

appreciate the use cases (i.e. event traces), and sequence diagrams that inform integration

test case creation.

B. COURSE MARKS EXAMPLE

(1) Step 1: Determine stakeholder questions to be answered and gather
existing documentation

The Course Marks System example for UFP estimate is derived from Fenton and

Bieman [69, pp. 367–368, 546–548]. The source table used terms such as ‘simple’ and

‘complex’ rather than ‘low’ and ‘high’. Based on the limited description associated with

the specification, the requirements are listed with the following associated assumptions

inserted next to the decompose requirement:

• “The Course Marks application enables a lecturer to enter student marks for a
predefined set of courses and students taking those courses” [69].
(Assumption: Lecturer is the User).

• “Marks can be updated” [69]. (Assumption: This means Added. Changed or
deleted are not explicitly called out in this example).

• “Lecturers cannot change the basic course information, as the course lists are
the responsibility of the system administrator” [69]. (Assumption: This
information is provided via drop down menus for courses and then students.

• The system is menu-driven.

• The lecturer (User) selects from a choice of courses (EI:
Menu_selct_course_choice)

• The lecturer (User) then selects from a choice of operations (EI:
Menu_selct_operation_choice), which are the following:

• Enter coursework marks (EI: Coursework_marks)

• Enter exam marks (EI: Exam_marks).

• Compute averages (Inquire on average grade, and display to user, EQ:
Average).

• Produce letter grades (Inquire on letter grades and display to user, EQ:
Letter_grades).

 83

• Display information to screen or printer (Report of list of the students, all
known marks, grades, averages, EO: EO: List_of_students_marks.

The source information found in [69] has been reproduced from the original and

illustrated in Table 16.

Table 16. UFP Calculation. Adapted from Terms from Solutions and
Function Point Complexity Weights [69, p. 547].

(2) Step 2: Identify scope and application boundary

Based on the source information, the boundary of the application to be counted is

identified and highlighted by the red dotted line in Figure 22. Course_file ILF represents

the data functions, and there are no EIFs in this example. Transactional functions are

represented by the EIs, EQs, and EOs. The ThreeMetrics methodology box and arrow

view serves as a translation point between a FP counting architectural view and an MP

architectural view, combining enough relevant information of each to show the initial

relationship between both methodologies. A corresponding MP term is identified and

associated with each data function and transactional function, using high-level

 84

pseudocode descriptions to refine the natural language descriptions and behaviors from

the source information.

In this example, the boundary of the application to be counted is highlighted by

the red dotted line, and the Course_file ILF and the IAA named Grade Collector are

internal to the boundary.

Figure 22. ThreeMetrics Box and Arrow View: Course Marks

(3) Step 3: Develop MP model

Once the box and arrow view assists in visualizing the boundary, the actors, the

initial behaviors, and interactions, this information can then be further refined by

capturing it in an MP model. The complete MP model for Course Marks can be found in

Appendix B. Excerpts that illustrate key points associated with the development of the

MP schema are included in this section.

The MP schema includes ROOTs for each Actor, the IAA named Grade

Collector, and the composition operations that set the conditions to extract the UFP

consistent with the methodology identified by the IFPUG counting process. The complete

 85

MP schema Course Marks includes the entire model in a format consistent with FP

counting.

Since there was such little source information provided, several assumptions were

made in order to describe ROOT behaviors in the model. The MP model was executed

using Firebird, resulting in four event traces.

User and the Grade_collector IAA behaviors are described in the following

segment of the MP schema.

ROOT User: (* select_course_choice
 select_operation_choice
 (enter_coursework_marks | modify_coursework_marks)
 (enter_exam_marks | modify_exam_marks)
 inquire_on_average_grade
 inquire_on_letter_grade
 receive_student_marks_report
 *)
 end_of_activity;

ROOT Grade_collector: (* return_course_selection
 return_operation_selection
 receive_coursework_marks_input
 receive_exam_marks_input
 calculate_average_grade
 write_average_grade
 send_average_grade
 equate_average_grade_to_letter
 send_letter_grade
 create_student_marks_report
 send_student_marks_report

 *) ;

The EI transactional function type interaction between User and the

Grade_collector IAA is captured in the following EI COORDINATE.

/* EI: Menu_selct_course_choice */
COORDINATE $pdoc: select_course_choice FROM User,
 $rdoc: return_course_selection FROM Grade_collector
 DO ADD $pdoc PRECEDES $rdoc; OD;

 86

The interaction between the Grade_collector IAA and the Coursefile ILF is

captured using SHARE ALL.

ROOT Coursefile: (* receive_coursework_marks_input
 receive_exam_marks_input
 update_student_exam_mark
 update_coursework_mark
 write_average_grade
 *);

Grade_collector, Coursefile SHARE ALL receive_exam_marks_input,
 write_average_grade,
 receive_coursework_marks_input;

The .wng files, containing the MP schema and event traces, for the Course Marks

model will be available on the Monterey Phoenix wiki hosted by the Naval Post Graduate

School [47].

(4) Step 4: Extract Data Functions count from MP model

Through manual inspection of the MP schema for the Course Marks example,

only one SHARE ALL is counted. This one SHARE ALL represents the data function

type (ILF or EIF). This describes the interaction of the Grade_collector IAA and the

Coursefile ILF. The functional complexity is provided by the source, which is reproduced

in Table 16.

(5) Step 5: Extract Transactional Functions count from MP model

Through manual inspection of the MP schema for the Course Marks example,

seven COORDINATEs are counted. The functional complexity is provided by the source,

reproduced in Table 16.

(6) Step 6: Extract integration test cases and views from MP model

Extracting event traces (use cases) from an MP schema sets the conditions to

verify the model either through manual inspection of the event traces or by leveraging

automated tools [33].

 87

Recall that a test case includes test steps, preconditions, and test data that supports

what the test case needs to achieve, and also its expected results, post conditions, and

information about the environment. The event traces generated from an MP model

provide solid detailed blueprints, which can be viewed as guidelines for the creation of

the integration test cases.

For this example, Scope 3 was used. Four event traces were generated. The event

traces generated for Scope 1 and 2 were inspected and increasing the scope did improve

chances of exposing errors in testing.

Figure 23, Event Trace #2 of 4, illustrates the behaviors for the Course Marks

application. Figure 24, Event Trace #3 of 4, illustrates the behaviors for the Course

Marks application with increasing detail.

Figure 25, Event Trace #4 of 4, illustrates the behaviors for the Course Marks

application with increasing detail, but slightly different behaviors represented in this

snapshot of a specific use case.

The use cases serve as a valuable blueprint for the construction of integration test

cases, which can then be used to support integration test estimates.

 88

Figure 23. Firebird Course Marks Event Trace 2 of 4

 89

Figure 24. Firebird Course Marks Event Trace 3 of 4

 90

Figure 25. Firebird Course Marks Event Trace 4 of 4

 91

Recall Brooks stated he has “successfully used the following rule of thumb for

scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early system

test, 1/4 system test, all components in hand” [53, p. 20].

.25 x Total effort = Estimate for integration testing

As discussed by Wolff, approximately six integration tests per day can be

executed for a large application, such as an electronic commerce system [58, p. 16]. This

does not include the amount of time required to create the test case.

In the COCOMO II results that will be discussed in Step 8, the Integration and

Test costs are part of the phase effort for Construction. In this phase breakdown, the total

Construction is 76% of the software development effort. Using the waterfall lifecycle

definitions for COCOMO II the breakdown is as follows: Product Design 17%;

Programming 58%; Integration and Test 25% [55].

As is illustrated in Figure 27, the Construction phase is allocated 4.3 months of

schedule. Twenty-five percent of that time is 1.075 months. The 1.075 months

corresponds to 21.5 days (assuming 5 days per week and 8 hours per day for each staff

person). Assuming that six test cases per day can be executed, then 129 test cases can be

executed in the allocated time for test and integration.

There are four event traces generated in the MP model. Not including the time

required to create the actual test cases, this would require less than one day to execute all

testing. This provides information for next steps to inform decision making, both

technically and programmatically. It seems unreasonable to complete testing in one day

on this application. The first step is to revisit the model, and ensure that the behaviors of

the application are accurately captured, and the model is not overly constrained. If this

model is truly representative of the application behaviors, then the next step is to

determine how this additional time in the schedule can be re-allocated.

Although Step 6 is focused on integration test case estimates, this step provides an

opportunity to confirm that the executable model is not overly constrained. The data and

 92

transactional function types are represented accurately, and the UFP is extracted and

calculated correctly, but the event traces suggest the model may need to be revisited to

ensure it is constructed properly while maintaining the same relevant information.

(7) Step 7: Determine the Unadjusted Function Point (UFP) count

The source information from [69], illustrated in Table 16, indicates that the data

function for ILF Course_file has a functional complexity of “Complex”, which is

assumed to mean High. This would then correspond to a functional size of 15, from the

IFPUG tables. The UFP count for data functions is calculated as follows:

(1 ILF x 15 UFP/ILF) = 15 UFPs

Table 12 also indicates that the transactional functions have functional

complexities of simple (assumed to mean low) and average. Using the information from

[69] in Table 12 and the IFPUG counting tables, the UFP count for transactional

functions is calculated as follows:

(1EI x 3UFP/EI) + (1EI x 3UFP/EI) + (1EI x 3UFP/EI) + (1EI x 3UFP/EI) + (1EQ x

3UFP/EQ) + (1EQ x 4UFP/EQ) + (1EO x 5UFP/EO) = 24 UFPs

The total UFP count is 15 + 24 = 39 UFPs

As discussed earlier, one of the challenges of inspecting the MP schema is how to

address the difference in functional complexity for an ILF and EIF. One approach is to

average the ILF and EIF functional size and suggest that the SHARE ALL functional

complexity and size for a data function (i.e. ILF or EIF) corresponds to:

Low = 6 i.e., (7+5)/2

Average = 8.5 i.e., (10+7)/2

High = 12.5 i.e., (10+15)/2

This would result in (1 SHARE ALL) x (12.5 UFP/SHARE ALL) = 12.5 UFPs.

 93

The same approach used for data functions can be applied to transactional

functions:

Low = 3.5 i.e., (3+3+6)/3

Average = 4.5 i.e., (4 +5+4)/3

High = 6.5 i.e., (6+7+6)/3

This results in an UFP total of 36, which is slightly higher than the 34 UFP count

found in the source information.

(1EI x 3.5 UFP/EI) + (1EI x 3.5 UFP/EI) + (1EI x 3.5 UFP/EI) + (1EI x 3.5 UFP/EI) +

(1EQ x 3.5 UFP/EQ) + (1EQ x 4.5 UFP/EQ) + (1EO x 5UFP/EO) = 24 UFPs

According to the Appendix Solutions to Selected Exercises of [69], the total UFP

is 35. According to the solution table in [69] the total UFP is 34. Based on the

information provided in the example, the ILF complexity is ‘complex’ which is assumed

to correspond to a functional complexity rating of high. For an ILF with a High

functional complexity rating the corresponding number of UFPs should be 15, not 10 as

is provided in the solution to the example. Therefore, the UFP count used for this analysis

is

(4EI*3UFP/EI) + (1EQ x3UFP/EQ) + (1EQ x 4UFP/EQ) + (1EO x 5UFP/EO) + (1ILF x

15UFP/ILF) = 39 UFPs

(8) Step 8: Calculate effort estimate

Using the total UFP count of 39, and directly inputting into [57] for a JAVA

implementation language, Maintenance Off and a Cost per Person-Month of $20,000,

results in the nominal estimates synopsized in Table 17 and supported by Figures 26

and 27.

 94

Table 17. Nominal Effort Estimates

Figure 26 illustrates the options available in the COCOMO II model. For this

analysis, nominal inputs were selected with 39 UFPs manually inserted into the model.

Figure 26. Nominal Effort Options Selected, Maintenance Off

 95

Figure 27 illustrates the results of the COCOMO II model for 55 UFPs manually

inserted into the model.

Figure 27. Nominal Effort Options Selected, Maintenance Off, Results

(9) Step 9: Finalize analysis and provide results to stakeholders

As discussed earlier, each stakeholder is interested in a slightly different view of

the same set of information. However, these views must be consistent with each other,

accurately representing a subset of the whole set of information.

Each step of the ThreeMetrics methodology provides meaningful information to

stakeholders. Programmers and engineers will appreciate the high-level pseudo code of

the MP model in Appendix B, since it describes the behaviors of the Course Marks

application and its internal and external interactions. System and software engineers will

appreciate the box and arrow format of the information in Figure 22. Cost analysts and

 96

program managers will appreciate the results of the COCOMO II model in Figure 27, as

input to resourcing requirements presented with each instance of the architecture model.

Testers will appreciate the use cases (i.e., event traces) in Figures 23–25, and the

sequence diagrams view that inform integration test case creation.

C. IT’S TEE TIME EXAMPLE

The It’s Tee Time golfing application example, or simply Tee Time, is derived

from the It’s Tee Time case exercise. Tee Time source information is protected by

copyright, and has been graciously provided by Q/P Management Group, Inc [56] for use

in this research. This case study contains detailed source information and an UFP count

answer key for the exercise. It has been expanded upon, with guidance and input from

Ms. Lori Holmes-Limbacher.

The Tee Time example includes a rich amount of source information, which is

used to explore four Courses of Action (COAs). Each COA represents a different model

and analysis of the behaviors of the Tee Time application, based on interpretation of the

source data. This demonstrates the key aspect of the research by showing that by

comparing outputs an analysis can be done on the UFP count extracted from the MP

model, how the count for each COA compares to the original case study UFP count, and

how the UFP and use cases extracted from the MP model affect the effort estimates.

In COA 1, the goal is to calculate the UFP count for all transactional functions

and data functions assuming an average complexity (i.e., functional complexity and size

from the IFPUG tables) for all transactional and data functions. The transactional

functions are extracted based on manual inspection of the model for the number of

COORDINATES. The data functions are extracted based on manual inspection of model

for the number of SHARE ALLs.

In COA 2, the goal is to calculate the UFP count for all transactional functions

and data functions, and extract transactional functions based on manual inspection of the

model for the number of COORDINATES. Data function types are extracted based on

manual inspection of model for the number of SHARE ALLs. The COORDINATEs are

distinguished by words such as “inquire” or “view” for EQ, “add”, “change”, or “delete”

 97

for EI, and “calculate” or “buy” for EO. For data functions, search for the number of ILFs

associated with SHARE ALL and number of EIFs associated with SHARE ALLs.

Assume an average functional complexity and size for each transactional and data

function type. The IFPUG tables are then used to assign functional complexity and size

values for each transactional and data function type.

In COA 3, the goal is to calculate the UFP count for all transactional functions

and data functions, extracting transactional function types based on manual inspection of

the MP model for the number of COORDINATES, and utilizing nested COORDINATEs

(i.e., counting the number of ADDs per COORDINATE) to more accurately represent the

DETs. The data function types are extracted based on manual inspection of model for the

number of SHARE ALLs. The IFPUG tables are then used to assign functional

complexity and size values for each transactional and data function type.

In COA 4, the goal is to calculate the UFP count for all transactional functions

and data functions, using nested COORDINATEs to represent both function types. The

process includes extracting transactional functions and data functions based on manual

inspection of the MP model for the number of COORDINATES, and utilize nested

COORDINATEs (count the number of ADDs per COORDINATE). The IFPUG tables

are then used to assign functional complexity and size values for each transactional and

data function type.

COA 1 and COA 2 will both leverage the same MP SCHEMA TeeTime_COA1_COA2.

COA 3 will leverage the MP SCHEMA named MP SCHEMA TeeTime_

Nested_COORDINATEs_SHARE ALL.

COA 4 will leverage the MP SCHEMA TeeTime_Nested COORDINATEs_Trans_Data.

Steps 1 and 2 of the ThreeMetrics methodology are common to COA 1, 2, 3 and

4. Step 3 of the ThreeMetrics methodology is common to COAs 1 and 2. Steps 4 through

9 illustrate how additional detail in the source data affect the UFP count.

 98

(1) Step 1: Determine stakeholder questions to be answered and gather
existing documentation

Organization A is performing application counts as part of internal cost and

management controls. The application It’s Tee Time, source information protected by

copyright, is being counted and includes several prototyped screens and high-level

functional requirements. The following figures and descriptions comprise the source

information associated with this application, provided by Q/P Management Group, Inc

[56]. Additional refinement of the requirements resulting in the detailed UFP count was

obtained through discussions with a subject matter expert.

Figure 28 illustrates the It’s Tee Time screen. Behaviors associated with this

screen are:

• Press Start to continue to the next screen or

• Press exit to leave the system

Figure 28. It’s Tee Time Screen. Adapted from [56].

 99

Figure 29 illustrates the Tee Time Main Menu screen. Behaviors associated with

this screen are:

• Golf Courses List takes you to Golf Course List screen

• Golf Courses Maintenance takes you to Maintain Golf Course screen

• Scoreboard takes you to Scoreboard screen

• Tee Time Shopping takes you to TeeTime Shopping screen

Figure 29. Tee Time Main Menu Screen. Adapted from [56].

 100

Figure 30 illustrates the Golf Course List Screen. Behaviors associated with this

screen are:

• You are required to enter a State and City from the Drop downs

• Hitting Display shows the list on the bottom of the page

• Drop downs come from cities and states in the Golf Courses database

• City Drop down is based on what State was entered

• Select a Golf Course from the list to go to Golf Course Detail screen

Figure 30. Golf Course List. Adapted from [56].

 101

Figure 31 illustrates the Golf Course Detail Screen. Behaviors associated with this

screen are:

• Select BACK to return to selection screen

• Select DIRECTIONS to navigate to MapQuest

• Select TEE TIME Reservation to go to that screen

Figure 31. Golf Course Detail. Adapted from [56].

 102

Figure 32 illustrates the Tee Time Reservation screen. Behaviors associated with

this screen are:

• ID and Name are carried from the previous screen

• Use hard coded DATE drop down to select a date

• Click DISPLAY to show current tee times on the bottom of the page

• Enter in new tee times on blank rows and click ADD

• Change information in existing tee times and click CHANGE

• Highlight Time field and click DELETE to remove tee time

Figure 32. Tee Time Reservation Screen. Adapted from [56].

 103

Figure 33 illustrates the Maintain Golf Courses screen. Behaviors associated with

this screen are:

• Enter information in blank screen and click ADD for new courses

• Enter ID or Name and click DISPLAY to show information

• Change information and click CHANGE for modifications

Click DELETE to remove (edit to make sure there are no tee times)

Figure 33. Maintain Golf Courses Screen. Adapted from [56].

 104

Figure 34 illustrates the Scoreboard screen. Behaviors associated with this screen

are:

• Selecting from the Main Menu results in this display

• Enter information in a blank line and click ADD for new scores

• Change information and click CHANGE for modifications

• Highlight Name and Click DELETE to remove

Figure 34. Scoreboard Screen. Adapted from [56].

 105

Figure 35 illustrates the Tee Time Shopping screen. Behaviors associated with

this screen are:

• Selection from the Main Menu results in this screen

• Initial display shows products and unit prices from Marketing system

• As quantities are entered, the totals are calculated

• Once all data is entered click BUY to send a record to purchasing

• Click View button to display a picture of the product

Figure 35. Tee Time Shopping. Adapted from [56].

 106

Figure 36 illustrates the Tee Time Merchandise Example screen. Behaviors

associated with this screen are:

• Press Back to return to the Tee Time Shopping screen

• Press Exit to leave the system

Figure 36. Tee Time Merchandise Example Screen: Mug. Adapted from [56].

107

Figure 37 illustrates the Tee Time database layout for Internal Logical Files,

identified in the Tee Time source data.

Figure 37. Database Layout: Internal Logical Files. Adapted from [56].

Figure 38 illustrates the Tee Time database layout for the External Interface File,

identified in the Tee Time source data.

Figure 38. Database Layout: External Internal Interface Files. Adapted from [56].

The answer key for the Tee Time application was included in the source

information provided by Q/P Management Group [56] for this research. The total UFP

count is 88.

 108

(2) Step 2: Identify scope and application boundary

After the source information is studied and interpreted, the next step is to create a

view of the information that can be used to identify the boundary of the application being

counted, represent the Internal Abstracted Application, in this case TT, represent the EIFs

and ILFs, and the EIs, EOs, EQs. This view is represented by Figure 39.

Figure 39. ThreeMetrics Box and Arrow View: Tee Time

The initial abstraction illustrated in Figure 39 does not contain enough

information to complete the MP model, but it does contain enough information to begin

to construct key abstracted portions of it. There are a total of 10 ROOTs that can be

identified based on the User, the EIF, and the application being counted. The Tee Time

application is being counted, and is contained within the application boundary depicted

by the red dashed line. Internal to the Tee Time application are three ILFs (Golf Courses

 109

ILF, Scoreboard ILF, Tee Times ILF) and the Internal Abstracted Application referred to

as TT (everything not the ILFs). The ROOTs are:

• ROOT User

• ROOT TT_GC_ILF

• ROOT TT_Teetimes_ILF

• ROOT TT_Scoreboard_ILF

• ROOT TT_Merchandise_EIF

• ROOT TT

• ROOT GC_ILF

• ROOT Teetimes_ILF

• ROOT Scoreboard_ILF

• ROOT Merchandise_EIF

Five of the ten ROOTs have been created to address the interactions between the IAA

and the Internal Logical Files and External Interface Files, to support the data function

UFP count. ROOT TT_GC_ILF, ROOT TT_Teetimes_ILF, ROOT TT_Scoreboard_ILF,

and ROOT TT_Merchandise_EIF represent the combination of behaviors between the

Internal Abstracted Application (IAA) and the ILFs and EIFs as seen by ROOT User. For

example, ROOT_TT_GC ILF represents the combined behaviors of the TT IAA and the

Golf Courses ILF (GC_ILF), as the ROOT_TT_GC_ILF interacts with the behaviors of

the User.

 110

(3) Step 3: Develop MP model

COA 1 and COA 2 share the same MP model named MP SCHEMA

TeeTime_COA1_COA2, but the MP model is inspected differently, resulting in different

UFP counts. COA 2 takes advantage of source information to create more precise

descriptions of behaviors, and then uses key words in the inspections process to assist in

determining the overall UFP count.

COA 3 uses MP SCHEMA TeeTime_ Nested_COORDINATEs_SHARE ALL

named introduces the use of nested COORDINATEs for transactional function types. The

data functions are still represented by SHARE ALL.

COA 4 leverages MP SCHEMA TeeTime_Nested COORDINATEs_Trans_Data.

The MP schema from COA 3 is re-used for transactional function types, but the

behaviors of the data function types are represented using nested COORDINATEs.

COA 1 and COA 2: For COA 1 and COA 2, the behaviors of each ROOT are

captured by specific activities associated with each ROOT, as described by the

requirements, supporting information, and the ThreeMetrics box and arrows

representation. The interactions between the User, the IAA, and the ILFs and EIF are

captured by utilizing the COORDINATE composition operation for the transactional

functions and SHARE ALL composition operation for the data functions. An average

functional complexity and size are assumed for the transactional and data function types.

The behaviors of the ROOTs are described using specific words associated with

transactional function types EI, EO, EQ.

• If the words inquire_on are used in the description of a behavior, then the
behavior is associated with an EQ.

• If the words input_add, input_change, or input_delete are used in the
description of a behavior, then the behavior is associated with an EI.

• If the word calculate is used in the description of a behaviors, then the
behavior is associated with an EO.

The assignment of an EI, EO, or EQ to a COORDINATE is based on the high-

level pseudo code used to describe the behaviors. This becomes important when

 111

distinguishing between the IFPUG functional complexity and size values of an EI, EO, or

EQ.

The ROOT User behaviors (representing the User) and the ROOT TT_GC_ILF

behaviors (representing the combined, relevant behaviors of the IAA and Golfcourses

ILF), and the ROOT TT_Merchandise_EIF (representing the combined, relevant

behaviors of the IAA and Merchandise EIF) are described in the following extract of the

MP Schema.

ROOT User: (* ((inquire_on_state_data
 inquire_on_city_data
 inquire_on_golfcourse_list
 (* (inquire_on_golfcourse_detail | go_back)*)
 inquire_on_reservation_display
 (input_add_reservation_data |
 input_change_reservation_data |
 input_delete_reservation_data)
 inquire_on_maintain_golfcourses
 (input_add_maintain_golfcourses_data |
 input_change_maintain_golfcourses_data |
 input_delete_maintain_golfcourses_data))
 inquire_on_scoreboard_display
 (input_add_scoreboard_data |
 input_change_scoreboard_data |
 input_delete_scoreboard_data)
 inquire_on_shopping_display
 (* (inquire_on_product_display
 calculate_total_amount
 buy_product)*)

 | exit)
 *);

ROOT TT_GC_ILF: (* (get_state_result
 get_city_result
 get_golfcourse_list_result
 get_golfcourse_detail_result
 get_maintain_golfcourses_result
 (*(add_maintain_golfcourses_data |
 change_maintain_golfcourses_data |
 delete_maintain_golfcourses_data)*))

 *);

 112

ROOT TT_Merchandise_EIF: (get_shopping_display_result
 (*(get_product_display_result
 get_calculated_total_amount
 send_calculated_amount_to_purchasing)*)
);

Behaviors representing the interaction between the User and the TT_GC_ILF and

the User and the TT_Merchandise_EIF are captured in COORDINATEs 1-20 of the MP

schema for transactional functions.

Since COORDINATE 1 includes the words inquire_on, it is considered an EQ

transactional function. Its functional complexity and size are found in the IFPUG tables

for an EQ transactional function.

/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $a:inquire_on_state_data FROM User,
 $b:get_state_result FROM TT_GC_ILF

DO ADD $a PRECEDES $b;OD;

COORDINATE 6 includes the words input_add. It is considered an EI

transactional function, and its functional complexity and size are found in the IFPUG

tables for an EI.

/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $k:input_add_reservation_data FROM User,
 $l:add_reservation_data FROM TT_Teetimes_ILF

 DO ADD $k PRECEDES $l; OD;

COORDINATE 19 includes the word calculate. It is considered an EO

transactional function, and its functional complexity and size are found in the IFPUG

tables for an EO transactional function.

/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $kk:calculate_total_amount FROM User,
 $ll:get_calculated_total_amount FROM TT_Merchandise_EIF

DO ADD $kk PRECEDES $ll;OD;

 113

The complete MP Schema for COA 1 and COA 2 are found in Appendix C

sections 1 and 2, respectively.

COA 3: The MP schema for COA 3 introduces the use of nested

COORDINATEs. The behaviors of each ROOT are captured by specific activities

associated with each ROOT, as described by the requirements, supporting information,

and the box and arrows representation.

For COA 3, the interactions between the IAA, the ILFs and EIF are still captured

by utilizing the SHARE ALL composition operation for the data functions. An average

functional complexity is still assumed for the data functions.

However, COA 3 begins to leverage the detailed Tee Time source information to

represent additional behaviors of each DET internal to each transactional function type,

in the form of each ADD in a nested COORDINATE. Since sufficient information is

available to determine the actual functional complexity and size, it is no longer necessary

to assume an average functional complexity and size for the transactional functions.

The methodology used in COA 1 and 2 to create the MP schema is used as a

starting point in COA 3. The behaviors of the ROOTs continue to be described using

specific words associated with transactional functions EI, EO, EQ. The description of the

behaviors is then expanded, to take advantage of composite events in the ROOTs and the

additional behaviors of DETs. The behaviors associated with each DET are captured in

the ROOTs, and the interaction is represented as an ADD within the nested

COORDINATE.

The ROOT User behaviors (representing the User) and the ROOT TT_GC_ILF

behaviors (representing the combined, relevant behaviors of the IAA and Golfcourses

ILF) are described in the following extract of the MP Schema for COA 3.

 114

 ROOT User: (* ((inquire_on_state_data
 inquire_on_city_data
 inquire_on_golfcourse_list
 (* (inquire_on_golfcourse_detail | go_back)*)
 inquire_on_reservation_display
 (input_add_reservation_data |
 input_change_reservation_data |
 input_delete_reservation_data)
 inquire_on_maintain_golfcourses
 (input_add_maintain_golfcourses_data |
 input_change_maintain_golfcourses_data |
 input_delete_maintain_golfcourses_data))
 inquire_on_scoreboard_display
 (input_add_scoreboard_data |
 input_change_scoreboard_data |
 input_delete_scoreboard_data)
 inquire_on_shopping_display
 (* (inquire_on_product_display
 calculate_total_amount
 buy_product)*)
 | exit)
 *);

inquire_on_state_data: click_state_arrow_dropdown receive_state_list_display;
ROOT TT_GC_ILF: (* (get_state_result
 get_city_result
 get_golfcourse_list_result
 get_golfcourse_detail_result
 get_maintain_golfcourses_result
 (*(add_maintain_golfcourses_data |
 change_maintain_golfcourses_data |
 delete_maintain_golfcourses_data)*))

 *);

get_state_result: receive_state_arrow_prompt send_state_list_display;

 115

The composite events inquire_on_state_data from ROOT User and

get_state_result from ROOT TT_GC_ILF contain additional behaviors which are

captured in COORDINATE 1 of the MP SCHEMA for COA 3.

COA 3 COORDINATE 1 represents the interaction between the User composite

event behavior inquire_on_state_data and the TT_GC_ILF composite event behavior

get_state_result. The interactions of the behaviors of the composite events are represented

in the nested COORDINATE, with 2 ADDs representing 2 DETs. One FTR is assumed,

based on the source information. For the EI COORDINATE #12, two FTRs are

referenced, but since it would not affect the functional size or complexity, it was

represented in the model as 1 FTR.

/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors , and nested
COORDINATE with 2 ADDs representing 2 DETs */

COORDINATE $a:inquire_on_state_data FROM User,
 $b:get_state_result FROM TT_GC_ILF

DO
 COORDINATE

 $ax: click_state_arrow_dropdown FROM $a,
 $bx: receive_state_arrow_prompt FROM $b,
 $axx: receive_state_list_display FROM $a,
 $bxx: send_state_list_display FROM $b
 DO

 ADD $ax PRECEDES $bx;
 ADD $bxx PRECEDES $axx;
 OD;
OD;

The two ADDs in COORDINATE 1 represent two DETs. The MP schema for

COA 3 contains 20 COORDINATEs each with a functional complexity and size

determined by the number of ADDs representing DETs. 1 FTR is used for the DETs

associated with each COORDINATE.

As in COAs 1 and 2, the data functions for COA 3 are represented by SHARE

ALL with an average functional complexity and size. The complete MP model for COA

3 is described in Appendix C Section 3.

 116

The MP schema for COA 4 is named SCHEMA It Is Tee Time Nested

COORDINATEs For transactional and data Functions. COA 4 leverages all the detailed

source information from It’s Tee Time, to represent the additional behaviors internal to

each transactional function and data function, in the form of each DET in a nested

COORDINATE. Since sufficient information is available to determine the actual

functional complexity and size, it is not necessary to assume an average functional

complexity and size for transactional functions or data functions.

The methodology used in COA 1 and 2 and 3 to create the MP schema is used as

a starting point in COA 4. The behaviors of the ROOTs continue to be described using

specific words associated with transactional functions EI, EO, EQ. The descriptions take

advantage of composite events in the ROOTs and the additional behaviors of DETs. Each

DET is represented as an ADD within the nested COORDINATE of a transactional

function.

COA 4: For COA 4, the same approach used for transactional function types is

applied to the data function types, using additional descriptive terms to describe the data

function types. COA 4 contains COORDINATEs 21–24, representing the data functions.

For example, ROOT TT represents the relevant behaviors of the IAA, including

the composite event “request”. ROOT GC_ILF represents the relevant behaviors of the

Golfcourses ILF including the composite event “respond.”

COORDINATE 21 represents the interaction between the TT IAA and the

GC_ILF, and is a nested COORDINATE with 11 ADDs representing 11 DETs.

 117

ROOT TT: (* (request | no_action) *);

request: request_GC_id request_GC_coursename request_GC_address
request_GC_city request_GC_state request_GC_zip

 request_GC_phone request_GC_description request_GC_slope
 request_GC_fees request_GC_requirements
 request_TT_id request_TT_coursename request_TT_date_repeating
 request_TT_teetime request_TT_no_players
 request_TT_no_holes request_TT_golfer_name request_TT_credit_card_type
 request_TT_credit_card_number request_TT_phone_number

 request_scoreboard_golfer_name request_scoreboard_coursename
 request_scoreboard_date request_scoreboard_slope
 request_scoreboard_score request_Merch_product_name
 request_Merch_price request_Merch_picture;

ROOT GC_ILF: (*(respond | no_action)*);

respond: respond_GC_id respond_GC_coursename respond_GC_address
respond_GC_city respond_GC_state respond_GC_zip respond_GC_phone
 respond_GC_description respond_GC_slope respond_GC_fees
 respond_GC_requirements;

/* COORDINATE 21: Interaction between the TT IAA and the Golf Courses ILF, and nested COORDINATE
with 11 ADDs representing 11 DETs */

COORDINATE $oo: request FROM TT,
 $pp: respond FROM GC_ILF

DO

 COORDINATE

 $oox1: request_GC_id FROM $oo,
 $ppx1: respond_GC_id FROM $pp,
 $oox2: request_GC_coursename FROM $oo,
 $ppx2: respond_GC_coursename FROM $pp,
 $oox3: request_GC_address FROM $oo,
 $ppx3: respond_GC_address FROM $pp,
 $oox4: request_GC_city FROM $oo,
 $ppx4: respond_GC_city FROM $pp,
 $oox5: request_GC_state FROM $oo,
 $ppx5: respond_GC_state FROM $pp,
 $oox6: request_GC_zip FROM $oo,
 $ppx6: respond_GC_zip FROM $pp,
 $oox7: request_GC_phone FROM $oo,
 $ppx7: respond_GC_phone FROM $pp,
 $oox8: request_GC_description FROM $oo,

 118

 $ppx8: respond_GC_description FROM $pp,
 $oox9: request_GC_slope FROM $oo,
 $ppx9: respond_GC_slope FROM $pp,
 $oox10: request_GC_fees FROM $oo,
 $ppx10: respond_GC_fees FROM $pp,
 $oox11: request_GC_requirements FROM $oo,
 $ppx11: respond_GC_requirements FROM $pp

 DO
 ADD $oox1 PRECEDES $ppx1;
 ADD $oox2 PRECEDES $ppx2;
 ADD $oox3 PRECEDES $ppx3;
 ADD $oox4 PRECEDES $ppx4;
 ADD $oox5 PRECEDES $ppx5;
 ADD $oox6 PRECEDES $ppx6;
 ADD $oox7 PRECEDES $ppx7;
 ADD $oox8 PRECEDES $ppx8;
 ADD $oox9 PRECEDES $ppx9;
 ADD $oox10 PRECEDES $ppx10;
 ADD $oox11 PRECEDES $ppx11;

 OD;
OD;

The complete MP schema for COA 4 can be found in Appendix C, section 4. Due

to the size of the MP schemas for COA 3 and COA 4, the strategy to execute the model

was modified, without compromising the integrity of the model or the UFP counts

associated with them.

In order to run the model on Firebird, the model had to be broken into several

parts. This does not affect the UFP count, but does allow the execution of the model in

order to obtain event traces, which inform test case estimates. The MP model was split

into two separate models; one to address the data function types, and the other to address

the transactional function types.

The original MP models for COA 3 and COA 4 had a set of roots TT_xxx and a

set of roots without TT prefix. Since these two sets did not interact, running them

together on Firebird significantly increased the time to execute them because all possible

combinations had to be produced. Running them together did not provide any additional

value; as a result, they were run separately, so that event traces could be produced and

inspected.

 119

As mentioned earlier, this was done to execute the models on Firebird, however

the UFP captured in the model is unaffected.

The .wng files, containing the MP schema and event traces, for Tee Time will be

available on the Monterey Phoenix wiki hosted by the Naval Post Graduate School [47].

(4) Step 4: Extract Data Functions count from MP model

COA 1: By manually inspecting the MP schema in Appendix C Section 1, a total

of 4 SHARE ALLs can be extracted from the model.

COA 2: By manually inspecting the MP schema in Appendix C Section 2, a total

of 4 SHARE ALLs can be extracted from the model. By inspecting the model for ILFs

and EIFs associated with the SHARE ALLs, 3 ILFs and 1 EIF are extracted for data

functions.

COA 3: By manually inspecting the MP schema in Appendix C Section 3, a total

of 4 SHARE ALLs can be extracted from the model. By inspecting the model for ILFs

and EIFs associated with the SHARE ALLs, 3 ILFs and 1 EIF are extracted for data

functions.

COA 4: By manually inspecting the MP schema in Appendix C Section 4, a total

of 4 COORDINATEs can be extracted from the model for data function types. By

inspecting the model for ILFs and EIFs associated with the COORDINATEs, 3 ILFs and

1 EIF are extracted for data functions.

(5) Step 5: Extract Transactional Functions count from MP model

COA 1: By manually inspecting the MP schema in Appendix C Section 1, a total

of 20 COORDINATEs representing transactional functions can be extracted from the

model.

COA 2: By manually inspecting the MP schema in Appendix C Section 2, a total

of 20 COORDINATEs representing transactional functions can be extracted from the

model. The transactional functions can be distinguished by inspecting the model for

specific words used to describe the behaviors associated with each COORDINATE. For

 120

example, words like “inquire” or “view” are associated with an for EQ; “add”, “change”,

or “delete” for an EI; and “calculate” or “buy” for an EO.

COA 3: By manually inspecting the MP schema in Appendix C Section 3, a total

of 20 COORDINATEs representing transactional functions can be extracted from the

model. The transactional functions can be distinguished by inspecting the model for

specific words used to describe the behaviors associated with each COORDINATE. For

example, words like “inquire” or “view” are associated with an for EQ; “add”, “change”,

or “delete” for an EI; and “calculate” or “buy” for an EO.

COA 4: By manually inspecting the MP schema in Appendix C Section 4, a total

of 20 COORDINATEs representing transactional functions can be extracted from the

model. The transactional functions can be distinguished by inspecting the model for

specific words used to describe the behaviors associated with each COORDINATE. For

example, words like “inquire” or “view” are associated with an for EQ; “add”, “change”,

or “delete” for an EI; and “calculate” or “buy” for an EO.

(6) Step 6: Extract integration test cases and views from MP model

Extracting event traces (i.e. use cases) from an MP schema sets the conditions to

verify the model either through manual inspection of the event traces or by leveraging

automated tools. The use cases serve as a valuable blueprint for the construction of

integration test cases, which can then be used to support integration test estimates.

For COA 1, Scope 1 was used and considered sufficient. The event traces were

inspected and increasing the scope did not show anything new or notable, and would not

improve chances of exposing errors in testing.

Utilizing the MP analyzer tool on Firebird and Scope 1, 864 Event Traces were

generated. Recall that a test case includes test steps, preconditions, test data that supports

what the test case needs to achieve, expected results, post conditions, and information

about the environment.

 121

The event traces generated from an MP model provide solid detailed blueprints, which

can be viewed as guidelines for the creation of the integration test cases. Three examples

of the 864 event traces are illustrated in Figures 40–42.

Figure 40 represents event trace #1 of 864. While early on in the execution of the

model, is still has detail describing the behaviors of the Tee Time application.

Figure 40. Event Trace #1 of 864

 122

Figure 41 represents event trace #400 of 864. The event trace begins to reflect the

complexity of the behaviors.

Figure 41. Event Trace #400 of 864

 123

Figure 42 represents event trace #864 of 864. The event trace represents

additional behaviors and additional complexity.

Figure 42. Event Trace #864 of 864

124

Recall Brooks stated “successfully used the following rule of thumb for

scheduling a software task: 1/3 planning, 1/6 coding, 1/4 component test and early system

test, 1/4 system test, all components in hand” [53, p. 20].

.25 x Total effort = Estimate for integration testing

As discussed by Wolff, approximately six integration tests per day can be

executed for a large application, such as an electronic commerce system [58, p. 16]. This

does not include the amount of time required to create the test case.

In the COCOMO II results that will be discussed in Step 8, the Integration and

Test costs are part of the phase effort for Construction. In this phase breakdown the total

Construction is 76% of the software development effort. Using the waterfall lifecycle

definitions for COCOMO II the breakdown is: Product Design 17%; Programming 58%;

Integration and Test 25% [55].

As is illustrated in Figure 44 for COA 1, the Construction phase is allocated 6.4

months of schedule. Twenty-five percent of that time is 1.6 months, which

corresponds to 32 days (assuming five days per week and eight hours per day for each

staff person). Assuming that six test cases per day can be executed, then 192 test cases

can be executed in the allocated time for test and integration.

However, there are 864 event traces generated in the MP model for COA 1. Not

including the time required to create the actual test cases, this would require over 144

days to execute all testing. Upon inspection of the event traces, some are significantly

less complicated than others, so test case generation and execution based on each event

trace will not require the same amount of effort. But this does provide information for

next steps to inform decision making, both technically and programmatically. The first

step is to revisit the model, and ensure that the behaviors of the application are accurately

captured. If the model is correct, then the next step is to determine is there any flexibility

in the schedule and resources to support additional testing. Since 144 days is unrealistic,

it becomes clear that only a subset of event traces can be selected for testing.

 125

If schedule does not support 192 test cases, then the event traces will need to be

inspected and a subset selected for use in the creation of test cases. Which ones to select

is a topic for future work.

(7) Step 7: Determine the Unadjusted Function Point (UFP) count

COA 1: For this COA, limited source information was applied so average

functional complexity and size values were used.

By assuming an EI/EO/EQ average functional complexity and size values,

derived from the IFPUG tables for transactional functions, the average value is (4+5+4)/3

= 4.3 For the 20 transactional functions, represented by COORDINATEs, the resulting

UFP count is 20 x 4.3 = 86 UFP.

By assuming an ILF/EIF average functional complexity and size value, derived

from the IFPUG tables for data functions, the average value is (10 +7)/2= 8.5. For the

four data functions, represented by SHARE ALLs, the resulting UFP count is (4 x 8.5) =

34 UFP.

The total UFP count provided in the It’s Tee Time source data is 88 UFP. Using

the ThreeMetrics methodology, the total UFP for COA 1 is 120 UFPs, which results in a

delta of 32 UFPs.

COA 2: By inspecting the model for key words associated with the behaviors of

each COORDINATE composition operation, the values for average for EI (4), average

for EO (5), and average for EQ (4) can be used to calculate the transactional function

UFP total.

(9 “inquire” COORDINATEs x 4 UFP/COORDINATE) + (2 “calculate or buy”

COORDINATEs x 5 UFP/COORDINATE) + (9 “add, change, delete” COORDINATEs

x 4 UFP/COORDINATE) = 36 + 36 + 10 = 82 UFP

 126

Using ILF average functional size of 10, and the EIF average functional size of 7,

(3 ILF SHARE Alls x 10) + (1 EIF SHARE Alls x 7) = 37.

The number of UFPs calculated for COA 2 is 82 + 37 = 119 UFPs.

The total UFP count provided in the It’s Tee Time source data is 88 UFP. The

total UFP for COA 2, using the ThreeMetrics methodology and assuming an average

functional complexity and size is 119 UFPs, a delta of 31 UFPs from the source

information.

COA 3: By inspecting the model for key words associated with the behaviors of

each COORDINATE composition operation, and the number of ADDs (representing

DETs) within each COORDINATE, the values for nine EIs, nine EQs, and two EOs, to

calculate the transactional function UFP count. Tables 18, 19, and 20 illustrate the UFP

count for transactional function types, extracted from the MP model for COA 3. Each

COORDINATE is numbered and has a corresponding functional complexity and size,

based on the number of ADDs (i.e., DETs) associated with each COORDINATE.

Additionally, the MP schema can be mined for specific words, e.g. inquire, add, change,

calculate, to specify what type of transactional function the COORDINATE is

representing.

Table 18 addresses the list of EQ COORDINATEs that were extracted from the

MP schema for COA 3.

 127

Table 18. EQ COORDINATEs Extracted From MP Schema for COA 3

Table 19 addresses the list of EI COORDINATEs that were extracted from the

MP schema for COA 3.

Table 19. EI COORDINATEs Extracted From MP Schema for COA 3

 128

Table 20 addresses the list of EO COORDINATEs that were extracted from the

MP schema for COA 3.

Table 20. EO COORDINATEs Extracted From MP Schema for COA 3

Adding the individually calculated UFP counts of the EQ, EI, and EO

transactional functions result in 62 UFPs for the transactional functions.

Assuming an average functional complexity and size for the data functions, and

inspecting the model for ILFs and EIFs, the UFP for data functions is

(3 ILF SHARE ALLs x 10 UFP/SHARE ALL) + (1 EIF SHARE ALL x 7 UFP/SHARE

ALL) = 37 UFPs

The total UFP for COA 3 is 62 UFP + 37 UFP = 99 UFP. The source information

indicated that the UFP for the It’s Tee Time Example is 88 UFP, indicating that there is a

delta of 11 UFP between the COA 3 count and the source information.

COA 4: By inspecting the model for key words associated with the behaviors of

each COORDINATE composition operation, and the number of ADDs (representing

DETs) within each COORDINATE, the values of the EIs, EOs, and EQs are calculated to

determine the total transactional function UFP count. Tables 20, 21, and 22 illustrate the

UFP count for transactional function types, extracted from the MP model for COA 3, that

is still applicable to COA 4. Each numbered nested COORDINATE has a corresponding

functional complexity and size, based on the number of ADDs (i.e., DETs) associated

with each COORDINATE. Additionally, the MP schema can be mined for specific

words, e.g. inquire, add, change, calculate, to specify what type of transactional function

the COORDINATE is representing.

 129

As discussed earlier, for COA 4, the behaviors of each ROOT are captured by

specific activities associated with each ROOT, based on the requirements, supporting

information, and the ThreeMetrics box and arrow representation.

COA 4 leverages the rich source information provided in the It’s Tee Time

example to represent behaviors of the DETs in a nested COORDINATE for transactional

functions. Each ADD within the nested COORDINATE of a transactional function

represents a DET.

Additionally, for COA 4, the interactions between the IAA and the ILFs and EIF

are captured by representing the DETs in a nested COORDINATE for data functions.

Each ADD within the nested COORDINATE of a data function represents a DET. Based

on the source information provided, each ILF and EIF has one RET.

Table 21 illustrates the UFP count for data functions, extracted from the MP

model for COA 4. Each numbered nested COORDINATE has a corresponding functional

complexity and size, based on the number of ADDs (i.e., Data Element Types) associated

with each COORDINATE. Additionally, the MP Schema can be mined for specific

words, e.g. ILF and EIF, to specify what type of file the COORDINATE is representing.

Table 21. Data Function UFP Using Nested COORDINATE

(1 ILF x 7UFP/ILF) + (1 ILF x 7UFP/ILF) + (1 ILF x 7UFP/ILF) + (1 EIF x 5 UFP/EIF)

= 26 UFPs

 130

Recall that adding the individually calculated UFP counts of the EQ, EI, and EO

transactional functions result in 62 UFPs for the transactional functions. The UFP counts

from Tables 21, 22 and 23, when added to Table 24 result in

62 UFPs + 26 UFP = 88 UFP

The total UFP for COA 4 is 88 UFPs. The source information indicated that the

UFP count for the It’s Tee Time Example is 88 UFPs, the same as COA 4.

(8) Step 8: Calculate effort estimate

The calculation for COA 1 is included in this example. Using the total UFP count

of 120 UFPs for COA 1 and directly inputting into [57], for a JAVA implementation

language, Maintenance Off and a Cost per Person-Month of $20,000, results in the

nominal estimates synopsized in Table 22 and supported by Figures 43 and 44.

Table 22. Nominal Effort Estimates for COA 1

 131

Figure 43 illustrates the options available in the COCOMO II model. For this

analysis, nominal inputs were selected with 120 UFPs manually inserted into the model.

Figure 43. Nominal Effort Options Selected for COA 1, Maintenance Off

 132

Figure 44 illustrates the results of the COCOMO II model for 120 UFPs manually

inserted into the model.

Figure 44. Nominal Effort Options for COA 1, Maintenance Off, Results

 133

The same methodology used to calculate the effort estimate for COA 1 is

applicable to COAs 2–4. The COCOMO II outputs for COAs 1–4, are illustrated in

Table 23.

Table 23. COCOMO II Output

(9) Step 9: Finalize analysis and provide results to stakeholders

As discussed earlier, each stakeholder is interested in a slightly different view of

the same set of information. However, these views must be consistent with each other,

accurately representing a subset of the whole set of information.

Each step of the ThreeMetrics methodology provides meaningful information to

stakeholders. Programmers and engineers will appreciate the high-level pseudo code of

the MP model in Appendix C, since it describes the behaviors of the Tee Time

application and its internal and external interactions. System and software engineers will

appreciate the box and arrow format of the information in Figure 39. Cost analysts and

program managers will appreciate the results of the COCOMO II model in Figure 44, as

input to resourcing requirements presented with each instance of the architecture model.

Testers will appreciate the use cases (event traces) in Figures 40–42, and the sequence

diagrams view that inform integration test case creation.

Total UFP
Count

Effort
(Person-months)

Schedule
(Months)

Cost
(Dollars)

SLOC

120 22.5 10.3 449,716 6360

119 22.3 10.2 445,597 6307

99 9.6 9.6 363,968 5247

88 9.2 9.2 319,750 4664

 134

THIS PAGE INTENTIONALLY LEFT BLANK

 135

V. SUMMARY OF RESULTS AND FINDINGS

The initial goal of this research was to answer the question “Can unadjusted

function point counts be extracted from executable architectural behavioral models, for

use in cost estimation models such as COCOMO II, in order to inform effort estimates

early in the life cycle?”

ThreeMetrics methodology, and its application to the examples in Chapter IV,

confirm the following contributions of this work:

• The ThreeMetrics methodology does relate function point counting,
COCOMO II cost estimates, and executable behavioral modeling of system
and software architecture specifications.

• The ThreeMetrics methodology, based on MP architecture model, provides a
way of establishing internal and external boundaries for function point
counting.

• The use of the MP language and framework significantly simplified otherwise
complex relationships. The ability to execute the model using MP Analyzer on
Firebird, inspect it, and debug it, provided confidence in the results of the
model.

• The ThreeMetrics methodology successfully unifies the two distinct function
point counting concepts of data function types and transactional function
types.

A. RESULTS AND FINDINGS

This research introduced a newly developed methodology called the

ThreeMetrics, whose name represents the three metrics resulting from the methodology:

UFP counts, use cases to inform integration test estimates, and views of the architecture.

The ThreeMetrics methodology employed architecture modeling of the behaviors

of a software-intensive system, the behaviors of the environment, and the behaviors of

the system interacting with the environment, in order to inform technical and investment

decisions. This research accomplished the following:

 136

• As described in Chapter III, this research presented a nine-step methodology
to extract an UFP count from MP’s executable architecture models for use in
software cost estimation.

• As demonstrated in three examples in Chapter IV, the ThreeMetrics
methodology leveraged precise behavioral modeling using MP and the MP
Analyzer on Firebird to assess architecture design decisions and their impacts.

• As demonstrated in three examples in Chapter IV, the ThreeMetrics
methodology related architecture modeling to resourcing through analysis of
behaviors and UFP counts, leveraging complexity and size metrics such as
DETs. The COCOMO II model extension was used to manually input the
UFP count (extracted from the MP model) into the COCOMO II model, to
determine cost estimates.

• As demonstrated in three examples in Chapter IV, the ThreeMetrics
methodology used event traces (i.e. use cases) to inform integration testing
estimates and decision making, based on estimates extracted from the
Construction phase of the COCOMO II model.

• As demonstrated in three examples in Chapter IV, the ThreeMetrics
methodology leveraged aspects of the FP counting methodology to write the
MP model with key words to distinguish between EI, EO, and EQ
transactional function types improved the accuracy of the UFP count.

• As demonstrated in the four COAs of example three in Chapter IV, accurately
representing the data function interactions contributed to an accurate total
UFP count.

• As demonstrated in three examples in Chapter IV, each step in the
ThreeMetrics methodology contributed to information, consistently
represented in multiple views and formats, that can be used communicate with
multiple stakeholders.

The UFP results of the three examples explored in Chapter IV are summarized in

Table 24. The UFPs extracted from the model approached the UFP count from the source

info answer key, as more details associated with the ILF and EIF were used. Representing

the behaviors of the data function types was accomplished using the IAA and capturing

the interactions between the data functions and the IAA in the MP model.

 137

Table 24. UFP Summation for Examples in Chapter IV

B. CONCLUSIONS

The ThreeMetrics methodology does relate architecture modeling to resourcing

through UFP counts, and has demonstrated that an UFP count can be extracted from an

MP executable architecture model, for use in software cost estimation.

The ThreeMetrics methodology leverages precise behavioral modeling using MP

and the MP Analyzer on Firebird to assess architecture design decisions and their

impacts. UFP counts can be manually inserted into the COCOMO II tool determine cost

estimates.

The ThreeMetrics methodology uses event traces and schedule information from

the COCOMO II model, to inform integration test estimates and decision making.

Each step of the ThreeMetrics methodology provides meaningful information to

stakeholders in the form of precise models, pseudo code, box and arrow diagrams, event

traces and cost estimates.

 138

C. FUTURE WORK

This research sets the conditions for interesting future work, building upon the

foundation of the ThreeMetrics methodology. Several topics are included below.

Although event traces were used to inform estimates for integration test cases, the

process and the criteria for the selection of a subset of relevant event traces to inform

integration test cases has not yet been done. Resourcing and schedule constraints may

limit the number of test cases that can be created from the set of MP event traces.

Currently, the UFP count extracted from the MP model is manually entered into

the COCOMO II model. A current prototype has demonstrated that a .mp file can

uploaded and parsed to extract the UFP count from the MP model. A future

implementation is required to automate the process to extract an UFP from a .mp file,

using the rules identified in the ThreeMetrics methodology.

The ThreeMetrics methodology must continue to be evaluated in the broader

context of the COCOMO II model. How MP metrics relate to the evaluation of actual

projects must be explored to demonstrate actual value, improve the mechanics of the

evaluation process, and establish new perspectives on COCOMO II and MP.

An MP model is a rich source of information, but not all the information in an MP

model, particularly the event grammar (i.e., pseudo code) has been utilized in this

research. Cost estimates derived from early architecture models need to take advantage of

all information available in the MP model. Besides using FPA, there are other complexity

and size metrics that can be employed. For example, consider that

Cost = K1*FP_metrics + K2*Complexity_metrics + K3*Size_estimate

FP counts are calculated mostly following the established FP methodology,

identifying the MP interactions and assigning functional complexity and size values.

Complexity metrics can also address alternatives and iterations in the MP model that

clearly indicate that an effort will be needed to implement them. Size estimates should

then consider the total number of events, composite events, roots, alternatives, iterations,

 139

concurrent events. Additional consideration must be given to how to properly balance

these metrics, such as determining what other information from the MP model may be of

use (such as reuse metrics), and considering how K1, K2, K3 coefficients should be

obtained, perhaps based on heuristics.

The IFPUG is continuing to evolve the Software Non-functional Assessment

Process (SNAP) counting practice which “measures software by quantifying the size of

non-functional requirements” [70]. An MP model can be refined to include greater levels

of detail about the application, if that detail is available. This includes further

decomposition of functional requirements and then linking them to technical (or non-

functional) requirements. Since SNAP focuses on the non-functional requirements, the

role of MP, the ThreeMetrics methodology, and SNAP is another topic for future work.

 140

THIS PAGE INTENTIONALLY LEFT BLANK

 141

APPENDIX A. MP SCHEMA FOR SPELL CHECKER

/* Name: MP SCHEMA Spellchecker
Purpose: Spelling Checker example for UFP estimate, derived from N. Fenton, J. Bieman,
Software Metrics, 3rd Edition, CRC, 2015, pp.252-254 [69].
Authors: This example was refined and improvised by M. Auguston on 02/08/16 and Monica
Farah-Stapleton on 02/16/16

 Tool Used: MP Analyzed on Firebird
 Scope: 1 */

SCHEMA Spellchecker

ROOT User: (* provide_document_file_name
 [provide_personal_dictionary]
 [inquire_on_number_of_processed_words]
 [check_number_of_processed_words]
 [inquire_on_number_of_errors_so_far]
 [check_number_of_errors_so_far]
 read_spelling_report
 update_document_file
 read_errors_message
 [update_personal_dictionary]
 [receive_misspld_wrd_rpt]
 *)
 no_more_errors
 end_of_work;

ROOT Spell_chk : (* read_document_file
 Process_document
 [send_number_of_processed_words]
 [report_number_of_processed_words]
 [send_number_of_errors]
 [report_number_of_errors]
 provide_spelling_report
 [report_misspld_wrd]
 *) ;

 Process_document: read_dictionary
 [read_personal_dictionary]
 [spelling_errors_detected]
 ;

/* EI: Doc_filename */

COORDINATE $pdoc: provide_document_file_name FROM User,
 $rdoc: read_document_file FROM Spell_chk
 DO ADD $pdoc PRECEDES $rdoc; OD;

 142

/* EI: Pers_diction_file */

COORDINATE $p1: provide_personal_dictionary FROM User,
 $r1: read_personal_dictionary FROM Spell_chk
 DO ADD $p1 PRECEDES $r1; OD;

/* EQ: Inquire_errors_so_far */

COORDINATE $cnerr: inquire_on_number_of_errors_so_far FROM User,
 $rnerr: send_number_of_errors FROM Spell_chk
 DO ADD $rnerr PRECEDES $cnerr; OD;

/* EO: No_ers_so_far_msg */

COORDINATE $cnerr1: check_number_of_errors_so_far FROM User,
 $rnerr1: report_number_of_errors FROM Spell_chk
 DO ADD $rnerr1 PRECEDES $cnerr1;
 OD;

/* EQ: Inquire_words_processed*/

COORDINATE $cwn: inquire_on_number_of_processed_words FROM User,
 $rwn: send_number_of_processed_words FROM Spell_chk
 DO ADD $rwn PRECEDES $cwn;
 OD;

/* EO: No_wrds_prosd_msg */

COORDINATE $cwn1: check_number_of_processed_words FROM User,
 $rwn1: report_number_of_processed_words FROM Spell_chk
 DO ADD $rwn1 PRECEDES $cwn1;
 OD;

/* EO: Misspld_wrd_rpt */

COORDINATE $cwn2: receive_misspld_wrd_rpt FROM User,
 $rwn2: report_misspld_wrd FROM Spell_chk
 DO ADD $cwn2 PRECEDES $rwn2;
 OD;

 143

ROOT Dictionary: (* read_dictionary *);

ROOT Document_file: (* (* read_document_file *)
 (* update_document_file *)
 (* send_document_file *)
 *);

ROOT Personal_Dictionary: (* (* update_personal_dictionary *)
 (* read_personal_dictionary *)
 *);

Spell_chk, Dictionary SHARE ALL read_dictionary;

Spell_chk, Personal_Dictionary SHARE ALL read_personal_dictionary ;

Spell_chk, Document_file SHARE ALL update_document_file;

 144

THIS PAGE INTENTIONALLY LEFT BLANK

 145

APPENDIX B. MP SCHEMA FOR COURSE MARKS

/* Name: MP SCHEMA Course Marks
 Purpose: The Course Marks System example for UFP estimate is derived from N.Fenton,
 J.Bieman, Software Metrics, 3rd Edition, CRC, 2015, pp. 367-368 and 546-548 [69]. This example
 was refined and improvised by Monica Farah-Stapleton 03/02/16, and MP Schema updated by
 Prof Mikhail Auguston, 03/02/16.
 Tool Used: MP Analyzed on Firebird
 Scope: 3 */

SCHEMA Course Marks

ROOT User: (* select_course_choice

 select_operation_choice

 (enter_coursework_marks | modify_coursework_marks)

 (enter_exam_marks | modify_exam_marks)

 inquire_on_average_grade

 inquire_on_letter_grade

 receive_student_marks_report

 *)

 end_of_activity;

ROOT Grade_collector: (* return_course_selection

 return_operation_selection

 receive_coursework_marks_input

 receive_exam_marks_input

 calculate_average_grade

 146

 write_average_grade

 send_average_grade

 equate_average_grade_to_letter

 send_letter_grade

 create_student_marks_report

 send_student_marks_report

 *) ;

/* EI: Menu_selct_course_choice */

COORDINATE $pdoc: select_course_choice FROM User,

 $rdoc: return_course_selection FROM Grade_collector

 DO ADD $pdoc PRECEDES $rdoc; OD;

/* EI: Menu_selct_operation_choice */

COORDINATE $p1: select_operation_choice FROM User,

 $r1: return_operation_selection FROM Grade_collector

 DO ADD $p1 PRECEDES $r1; OD;

/* EI: Coursework_marks */

 147

COORDINATE $p1: enter_coursework_marks FROM User,

 $r1: receive_coursework_marks_input FROM Grade_collector

 DO ADD $p1 PRECEDES $r1; OD;

/* EI: Exam_marks */

COORDINATE $p1: enter_exam_marks FROM User,

 $r1: receive_exam_marks_input FROM Grade_collector

 DO ADD $p1 PRECEDES $r1; OD;

/* EQ: Average */

COORDINATE $p1: inquire_on_average_grade FROM User,

 $r1: send_average_grade FROM Grade_collector

 DO ADD $p1 PRECEDES $r1; OD;

/* EQ: Letter_grade */

COORDINATE $p1: inquire_on_letter_grade FROM User,

 $r1: send_letter_grade FROM Grade_collector

 DO ADD $p1 PRECEDES $r1; OD;

/* EO: List_of_student_marks */

 148

COORDINATE $cnerr: receive_student_marks_report FROM User,

 $rnerr: send_student_marks_report FROM Grade_collector

 DO ADD $cnerr PRECEDES $rnerr;

 OD;

ROOT Coursefile: (* receive_coursework_marks_input

 receive_exam_marks_input

 update_student_exam_mark

 update_coursework_mark

 write_average_grade

 *);

Grade_collector, Coursefile SHARE ALL receive_exam_marks_input,

 write_average_grade,

 receive_coursework_marks_input;

 149

APPENDIX C. MP SCHEMA FOR IT’S TEE TIME COAS 1–4

A. MP SCHEMA FOR COURSE OF ACTION 1

/* Name: MP SCHEMA TeeTime_COA1_COA2.

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s Tee Time counting
example, courtesy of Q/P Management Group. TeeTime source information is protected by
copyright [56]. This example was refined and improvised by Monica Farah-Stapleton 06/20/16,
and updated by Prof Mikhail Auguston, 06/22/16.

 Tool Used: MP Analyzed on Firebird
 Scope: 1 */

SCHEMA TeeTime_COA1_COA2

/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */

ROOT User: (* ((inquire_on_state_data
 inquire_on_city_data
 inquire_on_golfcourse_list
 (* (inquire_on_golfcourse_detail | go_back)*)
 inquire_on_reservation_display
 (input_add_reservation_data |
 input_change_reservation_data |
 input_delete_reservation_data)
 inquire_on_maintain_golfcourses
 (input_add_maintain_golfcourses_data |
 input_change_maintain_golfcourses_data |
 input_delete_maintain_golfcourses_data))
 inquire_on_scoreboard_display
 (input_add_scoreboard_data |
 input_change_scoreboard_data |
 input_delete_scoreboard_data)
 inquire_on_shopping_display
 (* (inquire_on_product_display
 calculate_total_amount
 buy_product)*)

 | exit)
 *);

/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */

ROOT TT_GC_ILF: (* (get_state_result
 get_city_result
 get_golfcourse_list_result
 get_golfcourse_detail_result

 150

 get_maintain_golfcourses_result
 (*(add_maintain_golfcourses_data |
 change_maintain_golfcourses_data |
 delete_maintain_golfcourses_data)*))

 *);

/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */

ROOT TT_Teetimes_ILF: (get_reservation_display_result
 (*(add_reservation_data
 | change_reservation_data
 | delete_reservation_data)*)
);

/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */

ROOT TT_Scoreboard_ILF: (get_scoreboard_display_result
 (*(add_scoreboard_data
 | change_scoreboard_data
 | delete_scoreboard_data)*)
);

/* ROOT TT_Merchandise_EIF: The combined, relevant behaviors of the IAA and Merchandise EIF */

ROOT TT_Merchandise_EIF: (get_shopping_display_result
 (*(get_product_display_result
 get_calculated_total_amount
 send_calculated_amount_to_purchasing)*)
);

/* ROOT TT: The relevant behaviors of the IAA */

ROOT TT: (* (writing | reading) *);

/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */

ROOT GC_ILF: (+writing +) (*sending*);

/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */

ROOT Teetimes_ILF: (+writing +) (*sending*);

/* ROOT Scoreboard_ILF: The relevant behaviors of the Teetimes ILF */

 151

ROOT Scoreboard_ILF: (+writing +) (*sending*);

/* ROOT Merchandise_ILF: The relevant behaviors of the Merchandise EIF */

ROOT Merchandise_EIF: (+writing +) (*sending*);

/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $a:inquire_on_state_data FROM User,
 $b:get_state_result FROM TT_GC_ILF

DO ADD $a PRECEDES $b;OD;

/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $c:inquire_on_city_data FROM User,
 $d:get_city_result FROM TT_GC_ILF

DO ADD $c PRECEDES $d;OD;

/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $e:inquire_on_golfcourse_list FROM User,
 $f:get_golfcourse_list_result FROM TT_GC_ILF

 DO ADD $e PRECEDES $f;OD;

/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $g:inquire_on_golfcourse_detail FROM User,
 $h:get_golfcourse_detail_result FROM TT_GC_ILF

 DO ADD $g PRECEDES $h;OD;

/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $i:inquire_on_reservation_display FROM User,
 $j:get_reservation_display_result FROM TT_Teetimes_ILF

 DO ADD $i PRECEDES $j;OD;

/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

 152

COORDINATE $k:input_add_reservation_data FROM User,
 $l:add_reservation_data FROM TT_Teetimes_ILF

 DO ADD $k PRECEDES $l; OD;

/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $m:input_change_reservation_data FROM User,
 $n:change_reservation_data FROM TT_Teetimes_ILF

 DO ADD $m PRECEDES $n; OD;

/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $o:input_delete_reservation_data FROM User,
 $p:delete_reservation_data FROM TT_Teetimes_ILF

 DO ADD $o PRECEDES $p; OD;

/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $q:inquire_on_maintain_golfcourses FROM User,
 $r:get_maintain_golfcourses_result FROM TT_GC_ILF

DO ADD $q PRECEDES $r;OD;

/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/

COORDINATE $s:input_add_maintain_golfcourses_data FROM User,
 $t:add_maintain_golfcourses_data FROM TT_GC_ILF

 DO ADD $s PRECEDES $t; OD;

/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/

COORDINATE $u:input_change_maintain_golfcourses_data FROM User,
 $v:change_maintain_golfcourses_data FROM TT_GC_ILF

 DO ADD $u PRECEDES $v; OD;

/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/

COORDINATE $w:input_delete_maintain_golfcourses_data FROM User,
 $x:delete_maintain_golfcourses_data FROM TT_GC_ILF

 DO ADD $w PRECEDES $x; OD;

 153

/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $y:inquire_on_scoreboard_display FROM User,
 $z:get_scoreboard_display_result FROM TT_Scoreboard_ILF

 DO ADD $y PRECEDES $z; OD;

/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $aa:input_add_scoreboard_data FROM User,
 $bb:add_scoreboard_data FROM TT_Scoreboard_ILF

 DO ADD $aa PRECEDES $bb; OD;

/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $cc:input_change_scoreboard_data FROM User,
 $dd:change_scoreboard_data FROM TT_Scoreboard_ILF

 DO ADD $cc PRECEDES $dd; OD;

/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $ee:input_delete_scoreboard_data FROM User,
 $ff:delete_scoreboard_data FROM TT_Scoreboard_ILF

 DO ADD $ee PRECEDES $ff; OD;

/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $gg:inquire_on_shopping_display FROM User,
 $hh:get_shopping_display_result FROM TT_Merchandise_EIF

 DO ADD $gg PRECEDES $hh;OD;

/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $ii:inquire_on_product_display FROM User,

 154

 $jj:get_product_display_result FROM TT_Merchandise_EIF

 DO ADD $ii PRECEDES $jj;OD;

/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $kk:calculate_total_amount FROM User,
 $ll:get_calculated_total_amount FROM TT_Merchandise_EIF

DO ADD $kk PRECEDES $ll;OD;

/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $mm:buy_product FROM User,
 $nn:send_calculated_amount_to_purchasing FROM TT_Merchandise_EIF
DO ADD $mm PRECEDES $nn;OD;

/* SHARE All 1: Interaction between the IAA behaviors and the Golfcourse ILF behaviors */

TT, GC_ILF SHARE ALL writing;

/* SHARE All 2: Interaction between the IAA behaviors and the Teetimes ILF behaviors */

TT, Teetimes_ILF SHARE ALL writing;

/* SHARE All 3: Interaction between the IAA behaviors and the Scoreboard behaviors */

TT, Scoreboard_ILF SHARE ALL writing;

/* SHARE All 4: Interaction between the IAA behaviors and the Merchandise EIF behaviors */

TT, Merchandise_EIF SHARE ALL writing;

 155

B. MP SCHEMA FOR COURSE OF ACTION 2

/* Name: MP SCHEMA TeeTime_COA1_COA2 .

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s Tee Time counting
example, courtesy of Q/P Management Group. TeeTime source information is protected by
copyright [56]. This example was refined and improvised by Monica Farah-Stapleton 06/20/16,
and updated by Prof Mikhail Auguston, 06/22/16.

 Tool Used: MP Analyzed on Firebird
 Scope: 1 */

SCHEMA TeeTime_COA1_COA2

/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */

ROOT User: (* ((inquire_on_state_data
 inquire_on_city_data
 inquire_on_golfcourse_list
 (* (inquire_on_golfcourse_detail | go_back)*)
 inquire_on_reservation_display
 (input_add_reservation_data |
 input_change_reservation_data |
 input_delete_reservation_data)
 inquire_on_maintain_golfcourses
 (input_add_maintain_golfcourses_data |
 input_change_maintain_golfcourses_data |
 input_delete_maintain_golfcourses_data))
 inquire_on_scoreboard_display
 (input_add_scoreboard_data |
 input_change_scoreboard_data |
 input_delete_scoreboard_data)
 inquire_on_shopping_display
 (* (inquire_on_product_display
 calculate_total_amount
 buy_product)*)

 | exit)
 *);

/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */

ROOT TT_GC_ILF: (* (get_state_result
 get_city_result
 get_golfcourse_list_result
 get_golfcourse_detail_result
 get_maintain_golfcourses_result
 (*(add_maintain_golfcourses_data |

 156

 change_maintain_golfcourses_data |
 delete_maintain_golfcourses_data)*))

 *);

/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */

ROOT TT_Teetimes_ILF: (get_reservation_display_result
 (*(add_reservation_data
 | change_reservation_data
 | delete_reservation_data)*)
);

/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */

ROOT TT_Scoreboard_ILF: (get_scoreboard_display_result
 (*(add_scoreboard_data
 | change_scoreboard_data
 | delete_scoreboard_data)*)
);

/* ROOT TT_Merchandise_EIF: The combined, relevant behaviors of the IAA and Merchandise EIF */

ROOT TT_Merchandise_EIF: (get_shopping_display_result
 (*(get_product_display_result
 get_calculated_total_amount
 send_calculated_amount_to_purchasing)*)
);

/* ROOT TT: The relevant behaviors of the IAA */

ROOT TT: (* (writing | reading) *);

/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */

ROOT GC_ILF: (+writing +) (*sending*);

/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */

ROOT Teetimes_ILF: (+writing +) (*sending*);

/* ROOT Scoreboard_ILF: The relevant behaviors of the Teetimes ILF */

ROOT Scoreboard_ILF: (+writing +) (*sending*);

 157

/* ROOT Merchandise_ILF: The relevant behaviors of the Merchandise EIF */

ROOT Merchandise_EIF: (+writing +) (*sending*);

/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $a:inquire_on_state_data FROM User,
 $b:get_state_result FROM TT_GC_ILF

DO ADD $a PRECEDES $b;OD;

/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $c:inquire_on_city_data FROM User,
 $d:get_city_result FROM TT_GC_ILF

DO ADD $c PRECEDES $d;OD;

/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $e:inquire_on_golfcourse_list FROM User,
 $f:get_golfcourse_list_result FROM TT_GC_ILF

 DO ADD $e PRECEDES $f;OD;

/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $g:inquire_on_golfcourse_detail FROM User,
 $h:get_golfcourse_detail_result FROM TT_GC_ILF

 DO ADD $g PRECEDES $h;OD;

/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $i:inquire_on_reservation_display FROM User,
 $j:get_reservation_display_result FROM TT_Teetimes_ILF

 DO ADD $i PRECEDES $j;OD;

/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $k:input_add_reservation_data FROM User,
 $l:add_reservation_data FROM TT_Teetimes_ILF

 158

 DO ADD $k PRECEDES $l; OD;

/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $m:input_change_reservation_data FROM User,
 $n:change_reservation_data FROM TT_Teetimes_ILF

 DO ADD $m PRECEDES $n; OD;

/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors */

COORDINATE $o:input_delete_reservation_data FROM User,
 $p:delete_reservation_data FROM TT_Teetimes_ILF

 DO ADD $o PRECEDES $p; OD;

/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors */

COORDINATE $q:inquire_on_maintain_golfcourses FROM User,
 $r:get_maintain_golfcourses_result FROM TT_GC_ILF

DO ADD $q PRECEDES $r;OD;

/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/

COORDINATE $s:input_add_maintain_golfcourses_data FROM User,
 $t:add_maintain_golfcourses_data FROM TT_GC_ILF

 DO ADD $s PRECEDES $t; OD;

/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/

COORDINATE $u:input_change_maintain_golfcourses_data FROM User,
 $v:change_maintain_golfcourses_data FROM TT_GC_ILF

 DO ADD $u PRECEDES $v; OD;

/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors*/

COORDINATE $w:input_delete_maintain_golfcourses_data FROM User,
 $x:delete_maintain_golfcourses_data FROM TT_GC_ILF

 DO ADD $w PRECEDES $x; OD;

 159

/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $y:inquire_on_scoreboard_display FROM User,
 $z:get_scoreboard_display_result FROM TT_Scoreboard_ILF

 DO ADD $y PRECEDES $z; OD;

/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $aa:input_add_scoreboard_data FROM User,
 $bb:add_scoreboard_data FROM TT_Scoreboard_ILF

 DO ADD $aa PRECEDES $bb; OD;

/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $cc:input_change_scoreboard_data FROM User,
 $dd:change_scoreboard_data FROM TT_Scoreboard_ILF

 DO ADD $cc PRECEDES $dd; OD;

/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors */

COORDINATE $ee:input_delete_scoreboard_data FROM User,
 $ff:delete_scoreboard_data FROM TT_Scoreboard_ILF

 DO ADD $ee PRECEDES $ff; OD;

/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $gg:inquire_on_shopping_display FROM User,
 $hh:get_shopping_display_result FROM TT_Merchandise_EIF

 DO ADD $gg PRECEDES $hh;OD;

/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $ii:inquire_on_product_display FROM User,
 $jj:get_product_display_result FROM TT_Merchandise_EIF

 DO ADD $ii PRECEDES $jj;OD;

 160

/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $kk:calculate_total_amount FROM User,
 $ll:get_calculated_total_amount FROM TT_Merchandise_EIF

DO ADD $kk PRECEDES $ll;OD;

/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise ILF behaviors */

COORDINATE $mm:buy_product FROM User,
 $nn:send_calculated_amount_to_purchasing FROM TT_Merchandise_EIF
DO ADD $mm PRECEDES $nn;OD;

/* SHARE All 1: Interaction between the IAA behaviors and the Golfcourse ILF behaviors */

TT, GC_ILF SHARE ALL writing;

/* SHARE All 2: Interaction between the IAA behaviors and the Teetimes ILF behaviors */

TT, Teetimes_ILF SHARE ALL writing;

/* SHARE All 3: Interaction between the IAA behaviors and the Scoreboard behaviors */

TT, Scoreboard_ILF SHARE ALL writing;

/* SHARE All 4: Interaction between the IAA behaviors and the Merchandise EIF behaviors */

TT, Merchandise_EIF SHARE ALL writing;

 161

C. MP SCHEMA FOR COURSE OF ACTION 3

The complete MP schema for COA 3 is included below for ease of inspection, to

extract the data function types and transactional function types.

 In order to run the model on Firebird, each MP model was split into two separate

models, one that executed the data function types, and the other that executed the

transactional function types. Breaking the model up did not affect the UFP count, but did

allow the execution of the model in order to obtain event traces, to inform test case

estimates.

/* Name: MP SCHEMA COA 3 Nested COORDINATEs and SHARE ALL.

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s Tee Time counting
example, courtesy of Q/P Management Group. TeeTime source information is protected by
copyright [56]. This example was refined and improvised by Monica Farah-Stapleton 06/20/16,
and updated by Prof Mikhail Auguston, 06/22/16.

 Tool Used: MP Analyzed on Firebird
 Scope: 1 */

SCHEMA TeeTime_ Nested_COORDINATEs_SHARE ALL

/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */

 ROOT User: (* ((inquire_on_state_data
 inquire_on_city_data
 inquire_on_golfcourse_list
 (* (inquire_on_golfcourse_detail | go_back)*)
 inquire_on_reservation_display
 (input_add_reservation_data |
 input_change_reservation_data |
 input_delete_reservation_data)
 inquire_on_maintain_golfcourses
 (input_add_maintain_golfcourses_data |
 input_change_maintain_golfcourses_data |
 input_delete_maintain_golfcourses_data))
 inquire_on_scoreboard_display
 (input_add_scoreboard_data |
 input_change_scoreboard_data |
 input_delete_scoreboard_data)
 inquire_on_shopping_display
 (* (inquire_on_product_display
 calculate_total_amount
 buy_product)*)
 | exit)

 162

 *);

 inquire_on_state_data: click_state_arrow_dropdown receive_state_list_display;
 inquire_on_city_data: view_state_data_entered click_on_city_arrow_dropdown
 receive_city_list_display;

inquire_on_golfcourse_list: view_state_data_entered view_city_data_entered
 click_list_display_button view_golfcourse_name_displayed;

inquire_on_golfcourse_detail: click_icon_from_golfcourse_list request_id
 request_name request_address request_city request_state request_zip
 request_phone request_description request_slope request_fees
 request_requirements;

inquire_on_reservation_display: carryover_id carryover_coursename
 click_on_date_dropdown click_display request_time request_no_of_players
 request_no_of_holes request_name request_cc_type request_cc_no
 request_phone_no;

input_add_reservation_data: input_id input_coursename input_date
 input_time
 input_no_players input_no_holes input_name input_cc_type input_cc_no
 input_phone_no click_add_button receive_error_confirmation_message;

input_change_reservation_data: input_change_id input_change_coursename
 input_change_date input_change_time input_change_no_players
 input_change_no_holes
 input_change_name input_change_cc_type input_change_cc_no
 input_change_phone_no click_change_button receive_error_confirmation_message;

input_delete_reservation_data: input_delete_id input_delete_coursename
 input_delete_date input_delete_time click_delete_button
 receive_error_confirmation_message;

inquire_on_maintain_golfcourses: enter_coursename click_display_button request_id
 request_address request_city request_state request_zip request_phone
 request_description request_slope request_fees request_requirements
 receive_error_confirmation_message;

input_add_maintain_golfcourses_data: input_add_coursename input_add_address
 input_add_city
 input_add_state input_add_zip input_add_phone input_add_description
 input_add_slope input_add_fees input_add_requirements click_add_button receive_id
 receive_error_confirmation_message;

input_change_maintain_golfcourses_data: input_change_coursename input_change_address
 input_change_city input_change_state input_change_zip
 input_change_phone input_change_description input_change_slope

 163

 input_change_fees input_change_requirements click_change_button
 receive_id receive_error_confirmation_message;

input_delete_maintain_golfcourses_data: input_delete_id click_delete_button
 receive_error_confirmation_message;

inquire_on_scoreboard_display: click_scoreboard_icon request_name request_course
 request_date request_slope request_score;

input_add_scoreboard_data: input_add_name input_add_course input_add_date
 input_add_slope input_add_score click_add_button
 receive_error_confirmation_message;

input_change_scoreboard_data: input_change_name input_change_course
 input_change_date input_change_slope input_change_score
 click_change_button receive_error_confirmation_message;

input_delete_scoreboard_data: highlight_name click_delete_button
 receive_error_confirmation_message;

inquire_on_shopping_display: click_teetime_shopping_icon request_product request_unit_price;

inquire_on_product_display: click_view_icon request_image receive_error_confirmation_message;

calculate_total_amount: enter_quantity calculate_price_action calculate_price
 calculate_quantity calculate_total_for_row calculate_total_bill
 receive_error_confirmation_message;

buy_product: click_buy_button receive_product receive_price receive_quantity
 receive_row_total receive_bill_total receive_cc_type receive_cc_number
 receive_expiration_date receive_mailing_name receive_address receive_city
 receive_state receive_zip receive_error_confirmation_message;

/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */

ROOT TT_GC_ILF: (* (get_state_result
 get_city_result
 get_golfcourse_list_result
 get_golfcourse_detail_result
 get_maintain_golfcourses_result
 (*(add_maintain_golfcourses_data |
 change_maintain_golfcourses_data |
 delete_maintain_golfcourses_data)*))

 *);

get_state_result: receive_state_arrow_prompt send_state_list_display;

 164

get_city_result: send_state_data_entered receive_city_arrow_prompt
 send_city_list_display;

get_golfcourse_list_result: send_state_data_entered send_city_data_entered
 receive_list_display_button_prompt send_golfcourse_name_displayed;

get_golfcourse_detail_result: get_golfcourse_detail_results send_id
 send_name send_address send_city send_state send_zip
 send_phone send_description send_slope send_fees
 send_requirements;

get_maintain_golfcourses_result: view_coursename receive_display_button_prompt send_id
 send_address send_city send_state send_zip send_phone send_description
 send_slope send_fees send_requirements send_error_confirmation_message;

add_maintain_golfcourses_data: add_coursename add_address add_city
 add_state add_zip add_phone add_description add_slope
 add_fees add_requirements receive_add_button_prompt send_id
 send_error_confirmation_message;

change_maintain_golfcourses_data: change_coursename change_address change_city
 change_state change_zip change_phone change_description change_slope
 change_fees change_requirements receive_change_button_prompt send_id
 send_error_confirmation_message;

delete_maintain_golfcourses_data: delete_id receive_delete_button_prompt
 send_error_confirmation_message;

/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */

ROOT TT_Teetimes_ILF: (get_reservation_display_result
 (*(add_reservation_data
 | change_reservation_data
 | delete_reservation_data)*)
);

get_reservation_display_result: display_id display_coursename display_date
 send_display_results send_time send_no_of_players send_no_of_holes
 send_name send_cc_type send_cc_no send_phone_no;

add_reservation_data: add_id add_coursename add_date add_time
 add_no_players add_no_holes add_name add_cc_type add_cc_no

 165

 add_phone_no receive_add_button_response send_error_confirmation_message;

change_reservation_data: change_id change_coursename
 change_date change_time change_no_players change_no_holes
 change_name change_cc_type change_cc_no
 change_phone_no receive_change_button_response
 send_error_confirmation_message;

delete_reservation_data: delete_id delete_coursename
 delete_date delete_time receive_delete_button_response
 send_error_confirmation_message;

/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */

ROOT TT_Scoreboard_ILF: (get_scoreboard_display_result
 (*(add_scoreboard_data
 | change_scoreboard_data
 | delete_scoreboard_data)*)
);

get_scoreboard_display_result: receive_scoreboard_icon_prompt send_name send_course
 send_date send_slope send_score;

add_scoreboard_data: add_name add_course add_date add_slope add_score
 receive_add_button_response send_error_confirmation_message;

change_scoreboard_data: change_name change_course change_date change_slope
 change_score receive_change_button_response send_error_confirmation_message;

delete_scoreboard_data: delete_name receive_delete_button_prompt
 send_error_confirmation_message;
/* ROOT TT_Merchandise_ILF: The combined, relevant behaviors of the IAA and Merchandise EIF */

ROOT TT_Merchandise_EIF: (get_shopping_display_result
 (*(get_product_display_result get_calculated_total_amount
 send_calculated_amount_to_purchasing)*)
);

get_shopping_display: receive_teetime_shopping_icon_prompt send_product
 send_unit_price;

get_product_display: receive_view_icon_prompt send_image
 send_error_confirmation_message;

get_calculated_total_amount: receive_quantity receive_calculate_price_action_prompt
 send_price send_quantity send_total_for_row send_total_bill
 send_error_confirmation_message;

 166

send_calculated_amount_to_purchasing: receive_buy_button_prompt send_product
 send_price send_quantity send_row_total send_bill_total send_cc_type
 send_cc_number send_expiration_date send_mailing_name send_address
 send_city send_state send_zip
 send_error_confirmation_message;

/* ROOT TT: The relevant behaviors of the IAA */
ROOT TT: (* (writing | reading) *);

/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */
ROOT GC_ILF: (+writing +) (*sending*);

/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */
ROOT Teetimes_ILF: (+writing +) (*sending*);

/* ROOT Scoreboard_ILF: The relevant behaviors of the Teetimes ILF */
ROOT Scoreboard_ILF: (+writing +) (*sending*);

/* ROOT Merchandise_EIF: The relevant behaviors of the Merchandise EIF */
ROOT Merchandise_EIF: (+writing +) (*sending*);

/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors , and nested
COORDINATE with 2 ADDs representing 2 DETs */

COORDINATE $a:inquire_on_state_data FROM User,
 $b:get_state_result FROM TT_GC_ILF

DO

 COORDINATE

 $ax: click_state_arrow_dropdown FROM $a,
 $bx: receive_state_arrow_prompt FROM $b,
 $axx: receive_state_list_display FROM $a,
 $bxx: send_state_list_display FROM $b
 DO

 ADD $ax PRECEDES $bx;
 ADD $bxx PRECEDES $axx;
 OD;
OD;

/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 3 ADDs representing 3 DETs*/

 167

COORDINATE $c:inquire_on_city_data FROM User,
 $d:get_city_result FROM TT_GC_ILF

DO

 COORDINATE

 $cx1: view_state_data_entered FROM $c,
 $dx1: send_state_data_entered FROM $d,
 $cx2: click_on_city_arrow_dropdown FROM $c,
 $dx2: receive_city_arrow_prompt FROM $d,
 $cx3: receive_city_list_display FROM $c,
 $dx3: send_city_list_display FROM $d

 DO
 ADD $cx1 PRECEDES $dx1;
 ADD $cx2 PRECEDES $dx2;
 ADD $dx3 PRECEDES $cx3;

 OD;
OD;

/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 4 ADDs representing 4 DETs */

COORDINATE $e:inquire_on_golfcourse_list FROM User,
 $f:get_golfcourse_list_result FROM TT_GC_ILF

DO

COORDINATE
 $ex1: view_state_data_entered FROM $e,
 $fx1: send_state_data_entered FROM $f,
 $ex2: view_city_data_entered FROM $e,
 $fx2: send_city_data_entered FROM $f,
 $ex3: click_list_display_button FROM $e,
 $fx3: receive_list_display_button_prompt FROM $f,
 $ex4: view_golfcourse_name_displayed FROM $e,
 $fx4: send_golfcourse_name_displayed FROM $f

 DO
 ADD $ex1 PRECEDES $fx1;
 ADD $ex2 PRECEDES $fx2;
 ADD $ex3 PRECEDES $fx3;
 ADD $fx4 PRECEDES $ex4;

 OD;
OD;

 168

/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 12 ADDs representing 12 DETs */

COORDINATE $g: inquire_on_golfcourse_detail FROM User,
 $h: get_golfcourse_detail_result FROM TT_GC_ILF

DO

COORDINATE

 $gx1: click_icon_from_golfcourse_list FROM $g,
 $hx1: get_golfcourse_detail_results FROM $h,
 $gx2: request_id FROM $g,
 $hx2: send_id FROM $h,
 $gx3: request_name FROM $g,
 $hx3: send_name FROM $h,
 $gx4: request_address FROM $g,
 $hx4: send_address FROM $h,
 $gx5: request_city FROM $g,
 $hx5: send_city FROM $h,
 $gx6: request_state FROM $g,
 $hx6: send_state FROM $h,
 $gx7: request_zip FROM $g,
 $hx7: send_zip FROM $h,
 $gx8: request_phone FROM $g,
 $hx8: send_phone FROM $h,
 $gx9: request_description FROM $g,
 $hx9: send_description FROM $h,
 $gx10: request_slope FROM $g,
 $hx10: send_slope FROM $h,
 $gx11: request_fees FROM $g,
 $hx11: send_fees FROM $h,
 $gx12: request_requirements FROM $g,
 $hx12: send_requirements FROM $h

 DO
 ADD $gx1 PRECEDES $hx1;
 ADD $gx2 PRECEDES $hx2;
 ADD $gx3 PRECEDES $hx3;
 ADD $gx4 PRECEDES $hx4;
 ADD $gx5 PRECEDES $hx5;
 ADD $gx6 PRECEDES $hx6;
 ADD $gx7 PRECEDES $hx7;
 ADD $gx8 PRECEDES $hx8;
 ADD $gx9 PRECEDES $hx9;
 ADD $gx10 PRECEDES $hx10;
 ADD $gx11 PRECEDES $hx11;

 169

 ADD $hx12 PRECEDES $gx12;

 OD;
OD;

/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested
COORDINATE with 11 ADDs representing 11 DETs */

COORDINATE $i:inquire_on_reservation_display FROM User,
 $j:get_reservation_display_result FROM TT_Teetimes_ILF

 DO

 COORDINATE

 $ix1: carryover_id FROM $i,
 $jx1: display_id FROM $j,
 $ix2: carryover_coursename FROM $i,
 $jx2: display_coursename FROM $j,
 $ix3: click_on_date_dropdown FROM $i,
 $jx3: display_date FROM $j,
 $ix4: click_display FROM $i,
 $jx4: send_display_results FROM $j,
 $ix5: request_time FROM $i,
 $jx5: send_time FROM $j,
 $ix6: request_no_of_players FROM $i,
 $jx6: send_no_of_players FROM $j,
 $ix7: request_no_of_holes FROM $i,
 $jx7: send_no_of_holes FROM $j,
 $ix8: request_name FROM $i,
 $jx8: send_name FROM $j,
 $ix9: request_cc_type FROM $i,
 $jx9: send_cc_type FROM $j,
 $ix10: request_cc_no FROM $i,
 $jx10: send_cc_no FROM $j,
 $ix11: request_phone_no FROM $i,
 $jx11: send_phone_no FROM $j

 DO
 ADD $ix1 PRECEDES $jx1;
 ADD $ix2 PRECEDES $jx2;
 ADD $ix3 PRECEDES $jx3;
 ADD $ix4 PRECEDES $jx4;
 ADD $ix5 PRECEDES $jx5;
 ADD $ix6 PRECEDES $jx6;
 ADD $ix7 PRECEDES $jx7;
 ADD $ix8 PRECEDES $jx8;
 ADD $ix9 PRECEDES $jx9;

 170

 ADD $ix10 PRECEDES $jx10;
 ADD $jx11 PRECEDES $ix11;

 OD;
OD;

/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors and nested
COORDINATE with 12 ADDs representing 12 DETs */

COORDINATE $k: input_add_reservation_data FROM User,
 $l:add_reservation_data FROM TT_Teetimes_ILF
DO

 COORDINATE

 $kx1: input_id FROM $k,
 $lx1: add_id FROM $l,
 $kx2: input_coursename FROM $k,
 $lx2: add_coursename FROM $l,
 $kx3: input_date FROM $k,
 $lx3: add_date FROM $l,
 $kx4: input_time FROM $k,
 $lx4: add_time FROM $l,
 $kx5: input_no_players FROM $k,
 $lx5: add_no_players FROM $l,
 $kx6: input_no_holes FROM $k,
 $lx6: add_no_holes FROM $l,
 $kx7: input_name FROM $k,
 $lx7: add_name FROM $l,
 $kx8: input_cc_type FROM $k,
 $lx8: add_cc_type FROM $l,
 $kx9: input_cc_no FROM $k,
 $lx9: add_cc_no FROM $l,
 $kx10: input_phone_no FROM $k,
 $lx10: add_phone_no FROM $l,
 $kx11: click_add_button FROM $k,
 $lx11: receive_add_button_response FROM $l,
 $kx12: receive_error_confirmation_message FROM $k,
 $lx12: send_error_confirmation_message FROM $l

 DO

 ADD $kx1 PRECEDES $lx1;
 ADD $kx2 PRECEDES $lx2;
 ADD $kx3 PRECEDES $lx3;
 ADD $kx4 PRECEDES $lx4;
 ADD $kx5 PRECEDES $lx5;
 ADD $kx6 PRECEDES $lx6;

 171

 ADD $kx7 PRECEDES $lx7;
 ADD $kx8 PRECEDES $lx8;
 ADD $kx9 PRECEDES $lx9;
 ADD $kx10 PRECEDES $lx10;
 ADD $kx11 PRECEDES $lx11;
 ADD $lx12 PRECEDES $kx12;

 OD;
OD;

/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested
COORDINATE with 12 ADDs representing 12 DETs */

COORDINATE $m: input_change_reservation_data FROM User,
 $n:change_reservation_data FROM TT_Teetimes_ILF

DO

 COORDINATE

 $mx1: input_change_id FROM $m,
 $nx1: change_id FROM $n,
 $mx2: input_change_coursename FROM $m,
 $nx2: change_coursename FROM $n,
 $mx3: input_change_date FROM $m,
 $nx3: change_date FROM $n,
 $mx4: input_change_time FROM $m,
 $nx4: change_time FROM $n,
 $mx5: input_change_no_players FROM $m,
 $nx5: change_no_players FROM $n,
 $mx6: input_change_no_holes FROM $m,
 $nx6: change_no_holes FROM $n,
 $mx7: input_change_name FROM $m,
 $nx7: change_name FROM $n,
 $mx8: input_change_cc_type FROM $m,
 $nx8: change_cc_type FROM $n,
 $mx9: input_change_cc_no FROM $m,
 $nx9: change_cc_no FROM $n,
 $mx10: input_change_phone_no FROM $m,
 $nx10: change_phone_no FROM $n,
 $mx11: click_change_button FROM $m,
 $nx11: receive_change_button_response FROM $n,
 $mx12: receive_error_confirmation_message FROM $m,
 $nx12: send_error_confirmation_message FROM $n

 DO

 ADD $mx1 PRECEDES $nx1;

 172

 ADD $mx2 PRECEDES $nx2;
 ADD $mx3 PRECEDES $nx3;
 ADD $mx4 PRECEDES $nx4;
 ADD $mx5 PRECEDES $nx5;
 ADD $mx6 PRECEDES $nx6;
 ADD $mx7 PRECEDES $nx7;
 ADD $mx8 PRECEDES $nx8;
 ADD $mx9 PRECEDES $nx9;
 ADD $mx10 PRECEDES $nx10;
 ADD $mx11 PRECEDES $nx11;
 ADD $nx12 PRECEDES $mx12;
 OD;
OD;

/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested
COORDINATE with 6 ADDs representing 6 DETs */

COORDINATE $o:input_delete_reservation_data FROM User,
 $p:delete_reservation_data FROM TT_Teetimes_ILF
DO

 COORDINATE

 $ox1: input_delete_id FROM $o,
 $px1: delete_id FROM $p,
 $ox2: input_delete_coursename FROM $o,
 $px2: delete_coursename FROM $p,
 $ox3: input_delete_date FROM $o,
 $px3: delete_date FROM $p,
 $ox4: input_delete_time FROM $o,
 $px4: delete_time FROM $p,
 $ox5: click_delete_button FROM $o,
 $px5: receive_delete_button_response FROM $p,
 $ox6: receive_error_confirmation_message FROM $o,
 $px6: send_error_confirmation_message FROM $p

 DO
 ADD $ox1 PRECEDES $px1;
 ADD $ox2 PRECEDES $px2;
 ADD $ox3 PRECEDES $px3;
 ADD $ox4 PRECEDES $px4;
 ADD $ox5 PRECEDES $px5;
 ADD $px6 PRECEDES $ox6;
 OD;
OD;

 173

/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 13 ADDs representing 13 DETs */

COORDINATE $q:inquire_on_maintain_golfcourses FROM User,
 $r:get_maintain_golfcourses_result FROM TT_GC_ILF

 DO

 COORDINATE

 $qx1: enter_coursename FROM $q,
 $rx1: view_coursename FROM $r,
 $qx2: click_display_button FROM $q,
 $rx2: receive_display_button_prompt FROM $r,
 $qx3: request_id FROM $q,
 $rx3: send_id FROM $r,
 $qx4: request_address FROM $q,
 $rx4: send_address FROM $r,
 $qx5: request_city FROM $q,
 $rx5: send_city FROM $r,
 $qx6: request_state FROM $q,
 $rx6: send_state FROM $r,
 $qx7: request_zip FROM $q,
 $rx7: send_zip FROM $r,
 $qx8: request_phone FROM $q,
 $rx8: send_phone FROM $r,
 $qx9: request_description FROM $q,
 $rx9: send_description FROM $r,
 $qx10: request_slope FROM $q,
 $rx10: send_slope FROM $r,
 $qx11: request_fees FROM $q,
 $rx11: send_fees FROM $r,
 $qx12: request_requirements FROM $q,
 $rx12: send_requirements FROM $r,
 $qx13: receive_error_confirmation_message FROM $q,
 $rx13: send_error_confirmation_message FROM $r

 DO
 ADD $qx1 PRECEDES $rx1;
 ADD $qx2 PRECEDES $rx2;
 ADD $qx3 PRECEDES $rx3;
 ADD $qx4 PRECEDES $rx4;
 ADD $qx5 PRECEDES $rx5;
 ADD $qx6 PRECEDES $rx6;
 ADD $qx7 PRECEDES $rx7;
 ADD $qx8 PRECEDES $rx8;
 ADD $qx9 PRECEDES $rx9;
 ADD $qx10 PRECEDES $rx10;
 ADD $qx11 PRECEDES $rx11;

 174

 ADD $qx12 PRECEDES $rx12;
 ADD $rx13 PRECEDES $qx13;

 OD;
OD;

/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and
nested COORDINATE with 13 ADDs representing 13 DETs */

COORDINATE $s:input_add_maintain_golfcourses_data FROM User,
 $t:add_maintain_golfcourses_data FROM TT_GC_ILF
 DO

 COORDINATE

 $sx1: input_add_coursename FROM $s,
 $tx1: add_coursename FROM $t,
 $sx2: input_add_address FROM $s,
 $tx2: add_address FROM $t,
 $sx3: input_add_city FROM $s,
 $tx3: add_city FROM $t,
 $sx4: input_add_state FROM $s,
 $tx4: add_state FROM $t,
 $sx5: input_add_zip FROM $s,
 $tx5: add_zip FROM $t,
 $sx6: input_add_phone FROM $s,
 $tx6: add_phone FROM $t,
 $sx7: input_add_description FROM $s,
 $tx7: add_description FROM $t,
 $sx8: input_add_slope FROM $s,
 $tx8: add_slope FROM $t,
 $sx9: input_add_fees FROM $s,
 $tx9: add_fees FROM $t,
 $sx10: input_add_requirements FROM $s,
 $tx10: add_requirements FROM $t,
 $sx11: click_add_button FROM $s,
 $tx11: receive_add_button_prompt FROM $t,
 $sx12: receive_id FROM $s,
 $tx12: send_id FROM $t,
 $sx13: receive_error_confirmation_message FROM $s,
 $tx13: send_error_confirmation_message FROM $t

 DO
 ADD $sx1 PRECEDES $tx1;
 ADD $sx2 PRECEDES $tx2;
 ADD $sx3 PRECEDES $tx3;
 ADD $sx4 PRECEDES $tx4;
 ADD $sx5 PRECEDES $tx5;

 175

 ADD $sx6 PRECEDES $tx6;
 ADD $sx7 PRECEDES $tx7;
 ADD $sx8 PRECEDES $tx8;
 ADD $sx9 PRECEDES $tx9;
 ADD $sx10 PRECEDES $tx10;
 ADD $sx11 PRECEDES $tx11;
 ADD $tx12 PRECEDES $sx12;
 ADD $tx13 PRECEDES $sx13;

 OD;
OD;

/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and
nested COORDINATE with 13 ADDs representing 13 DETs */

COORDINATE $u:input_change_maintain_golfcourses_data FROM User,
 $v:change_maintain_golfcourses_data FROM TT_GC_ILF

 DO

 COORDINATE

 $ux1: input_change_coursename FROM $u,
 $vx1: change_coursename FROM $v,
 $ux2: input_change_address FROM $u,
 $vx2: change_address FROM $v,
 $ux3: input_change_city FROM $u,
 $vx3: change_city FROM $v,
 $ux4: input_change_state FROM $u,
 $vx4: change_state FROM $v,
 $ux5: input_change_zip FROM $u,
 $vx5: change_zip FROM $v,
 $ux6: input_change_phone FROM $u,
 $vx6: change_phone FROM $v,
 $ux7: input_change_description FROM $u,
 $vx7: change_description FROM $v,
 $ux8: input_change_slope FROM $u,
 $vx8: change_slope FROM $v,
 $ux9: input_change_fees FROM $u,
 $vx9: change_fees FROM $v,
 $ux10: input_change_requirements FROM $u,
 $vx10: change_requirements FROM $v,
 $ux11: click_change_button FROM $u,
 $vx11: receive_change_button_prompt FROM $v,
 $ux12: receive_id FROM $u,
 $vx12: send_id FROM $v,
 $ux13: receive_error_confirmation_message FROM $u,
 $vx13: send_error_confirmation_message FROM $v

 176

 DO
 ADD $ux1 PRECEDES $vx1;
 ADD $ux2 PRECEDES $vx2;
 ADD $ux3 PRECEDES $vx3;
 ADD $ux4 PRECEDES $vx4;
 ADD $ux5 PRECEDES $vx5;
 ADD $ux6 PRECEDES $vx6;
 ADD $ux7 PRECEDES $vx7;
 ADD $ux8 PRECEDES $vx8;
 ADD $ux9 PRECEDES $vx9;
 ADD $ux10 PRECEDES $vx10;
 ADD $ux11 PRECEDES $vx11;
 ADD $vx12 PRECEDES $ux12;
 ADD $vx13 PRECEDES $ux13;

 OD;
OD;

/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and
nested COORDINATE with 3 ADDs representing 3 DETs */
COORDINATE $w:input_delete_maintain_golfcourses_data FROM User,
 $x:delete_maintain_golfcourses_data FROM TT_GC_ILF

DO

 COORDINATE

 $wx1: input_delete_id FROM $w,
 $xx1: delete_id FROM $x,
 $wx2: click_delete_button FROM $w,
 $xx2: receive_delete_button_prompt FROM $x,
 $wx3: input_change_city FROM $w,
 $xx3: change_city FROM $x

 DO
 ADD $wx1 PRECEDES $xx1;
 ADD $xx2 PRECEDES $wx2;
 ADD $xx3 PRECEDES $wx3;

 OD;
OD;

 177

/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 6 ADDs representing 6 DETs */

COORDINATE $y: inquire_on_scoreboard_display FROM User,
 $z: get_scoreboard_display_result FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $yx1: click_scoreboard_icon FROM $y,
 $zx1: receive_scoreboard_icon_prompt FROM $z,
 $yx2: request_name FROM $y,
 $zx2: send_name FROM $z,
 $yx3: request_course FROM $y,
 $zx3: send_course FROM $z,
 $yx4: request_date FROM $y,
 $zx4: send_date FROM $z,
 $yx5: request_slope FROM $y,
 $zx5: send_slope FROM $z,
 $yx6: request_score FROM $y,
 $zx6: send_score FROM $z

 DO
 ADD $yx1 PRECEDES $zx1;
 ADD $yx2 PRECEDES $zx2;
 ADD $yx3 PRECEDES $zx3;
 ADD $yx4 PRECEDES $zx4;
 ADD $yx5 PRECEDES $zx5;
 ADD $yx6 PRECEDES $zx6;

 OD;
OD;

/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 7 ADDs representing 7 DETs */

COORDINATE $aa: input_add_scoreboard_data FROM User,
 $bb: add_scoreboard_data FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $aax1: input_add_name FROM $aa,
 $bbx1: add_name FROM $bb,
 $aax2: input_add_course FROM $aa,
 $bbx2: add_course FROM $bb,
 $aax3: input_add_date FROM $aa,

 178

 $bbx3: add_date FROM $bb,
 $aax4: input_add_slope FROM $aa,
 $bbx4: add_slope FROM $bb,
 $aax5: input_add_score FROM $aa,
 $bbx5: add_score FROM $bb,
 $aax6: click_add_button FROM $aa,
 $bbx6: receive_add_button_response FROM $bb,
 $aax7: receive_error_confirmation_message FROM $aa,
 $bbx7: send_error_confirmation_message FROM $bb

 DO
 ADD $aax1 PRECEDES $bbx1;
 ADD $aax2 PRECEDES $bbx2;
 ADD $aax3 PRECEDES $bbx3;
 ADD $aax4 PRECEDES $bbx4;
 ADD $aax5 PRECEDES $bbx5;
 ADD $aax6 PRECEDES $bbx6;
 ADD $aax7 PRECEDES $bbx7;

 OD;
OD;

/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 7 ADDs representing 7 DETs */

COORDINATE $cc: input_change_scoreboard_data FROM User,
 $dd: change_scoreboard_data FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $ccx1: input_change_name FROM $cc,
 $ddx1: change_name FROM $dd,
 $ccx2: input_change_course FROM $cc,
 $ddx2: change_course FROM $dd,
 $ccx3: input_change_date FROM $cc,
 $ddx3: change_date FROM $dd,
 $ccx4: input_change_slope FROM $cc,
 $ddx4: change_slope FROM $dd,
 $ccx5: input_change_score FROM $cc,
 $ddx5: change_score FROM $dd,
 $ccx6: click_change_button FROM $cc,
 $ddx6: receive_change_button_response FROM $dd,
 $ccx7: receive_error_confirmation_message FROM $cc,
 $ddx7: send_error_confirmation_message FROM $dd

 179

 DO
 ADD $ccx1 PRECEDES $ddx1;
 ADD $ccx2 PRECEDES $ddx2;
 ADD $ccx3 PRECEDES $ddx3;
 ADD $ccx4 PRECEDES $ddx4;
 ADD $ccx5 PRECEDES $ddx5;
 ADD $ccx6 PRECEDES $ddx6;
 ADD $ccx7 PRECEDES $ddx7;

 OD;
OD;

/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $ee: input_delete_scoreboard_data FROM User,
 $ff: delete_scoreboard_data FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $eex1: highlight_name FROM $ee,
 $ffx1: delete_name FROM $ff,
 $eex2: click_delete_button FROM $ee,
 $ffx2: receive_delete_button_prompt FROM $ff,
 $eex3: receive_error_confirmation_message FROM $ee,
 $ffx3: send_error_confirmation_message FROM $ff

 DO
 ADD $eex1 PRECEDES $ffx1;
 ADD $eex2 PRECEDES $ffx2;
 ADD $ffx3 PRECEDES $eex3;

 OD;
OD;

/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and
nested COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $gg: inquire_on_shopping_display FROM User,
 $hh: get_shopping_display_result FROM TT_Merchandise_EIF

 180

DO

 COORDINATE

 $ggx1: click_teetime_shopping_icon FROM $gg,
 $hhx1: receive_teetime_shopping_icon_prompt FROM $hh,
 $ggx2: request_product FROM $gg,
 $hhx2: send_product FROM $hh,
 $ggx3: request_unit_price FROM $gg,
 $hhx3: send_unit_price FROM $hh

 DO
 ADD $ggx1 PRECEDES $hhx1;
 ADD $ggx2 PRECEDES $hhx2;
 ADD $hhx3 PRECEDES $ggx3;

 OD;
OD;

/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and
nested COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $ii:inquire_on_product_display FROM User,
 $jj:get_product_display_result FROM TT_Merchandise_EIF

DO

 COORDINATE

 $iix1: click_view_icon FROM $ii,
 $jjx1: receive_view_icon_prompt FROM $jj,
 $iix2: request_image FROM $ii,
 $jjx2: send_image FROM $jj,
 $iix3: receive_error_confirmation_message FROM $ii,
 $jjx3: send_error_confirmation_message FROM $jj

 DO
 ADD $iix1 PRECEDES $jjx1;
 ADD $iix2 PRECEDES $jjx2;
 ADD $jjx3 PRECEDES $iix3;

 OD;
OD;

 181

/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and
nested COORDINATE with 7 ADDs representing 7 DETs */

COORDINATE $kk: calculate_total_amount FROM User,
 $ll:get_calculated_total_amount FROM TT_Merchandise_EIF

DO

 COORDINATE

 $kkx1: enter_quantity FROM $kk,
 $llx1: receive_quantity FROM $ll,
 $kkx2: calculate_price_action FROM $kk,
 $llx2: receive_calculate_price_action_prompt FROM $ll,
 $kkx3: calculate_price FROM $kk,
 $llx3: send_price FROM $ll,
 $kkx4: calculate_quantity FROM $kk,
 $llx4: send_quantity FROM $ll,
 $kkx5: calculate_total_for_row FROM $kk,
 $llx5: send_total_for_row FROM $ll,
 $kkx6: calculate_total_bill FROM $kk,
 $llx6: send_total_bill FROM $ll,
 $kkx7: receive_error_confirmation_message FROM $kk,
 $llx7: receive_error_confirmation_message FROM $ll

 DO
 ADD $kkx1 PRECEDES $llx1;
 ADD $kkx2 PRECEDES $llx2;
 ADD $kkx3 PRECEDES $llx3;
 ADD $kkx4 PRECEDES $llx4;
 ADD $kkx5 PRECEDES $llx5;
 ADD $kkx6 PRECEDES $llx6;
 ADD $llx7 PRECEDES $kkx7;

 OD;
OD;

/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise ILF behaviors, and
nested COORDINATE with 15 ADDs representing 15 DETs */

COORDINATE $mm: buy_product FROM User,

$nn: send_calculated_amount_to_purchasing FROM TT_Merchandise_EIF

DO

 182

 COORDINATE

 $mmx1: click_buy_button FROM $mm,
 $nnx1: receive_buy_button_prompt FROM $nn,
 $mmx2: receive_product FROM $mm,
 $nnx2: send_product FROM $nn,
 $mmx3: receive_price FROM $mm,
 $nnx3: send_price FROM $nn,
 $mmx4: receive_quantity FROM $mm,
 $nnx4: send_quantity FROM $nn,
 $mmx5: receive_row_total FROM $mm,
 $nnx5: send_row_total FROM $nn,
 $mmx6: receive_bill_total FROM $mm,
 $nnx6: send_bill_total FROM $nn,
 $mmx7: receive_cc_type FROM $mm,
 $nnx7: send_cc_type FROM $nn,
 $mmx8: receive_cc_number FROM $mm,
 $nnx8: send_cc_number FROM $nn,
 $mmx9: receive_expiration_date FROM $mm,
 $nnx9: send_expiration_date FROM $nn,
 $mmx10: receive_mailing_name FROM $mm,
 $nnx10: send_mailing_name FROM $nn,
 $mmx11: receive_address FROM $mm,
 $nnx11: send_address FROM $nn,
 $mmx12: receive_city FROM $mm,
 $nnx12: send_city FROM $nn,
 $mmx13: receive_state FROM $mm,
 $nnx13: send_state FROM $nn,
 $mmx14: receive_zip FROM $mm,
 $nnx14: send_zip FROM $nn,
 $mmx15: receive_error_confirmation_message FROM $mm,
 $nnx15: send_error_confirmation_message FROM $nn

 DO
 ADD $mmx1 PRECEDES $nnx1;
 ADD $mmx2 PRECEDES $nnx2;
 ADD $mmx3 PRECEDES $nnx3;
 ADD $mmx4 PRECEDES $nnx4;
 ADD $mmx5 PRECEDES $nnx5;
 ADD $mmx6 PRECEDES $nnx6;
 ADD $mmx7 PRECEDES $nnx7;
 ADD $mmx8 PRECEDES $nnx8;
 ADD $mmx9 PRECEDES $nnx9;
 ADD $mmx10 PRECEDES $nnx10;
 ADD $mmx11 PRECEDES $nnx11;
 ADD $mmx12 PRECEDES $nnx12;
 ADD $mmx13 PRECEDES $nnx13;
 ADD $mmx14 PRECEDES $nnx14;
 ADD $nnx15 PRECEDES $mmx15;

 183

 OD;
OD;

/* Data Function Calculation using SHARE ALL and assuming Average functional complexity and size rather
than specific RET/DET calculation */

/* SHARE All 1 */
TT, GC_ILF SHARE ALL writing;

/* SHARE All 2 */
TT, Teetimes_ILF SHARE ALL writing;

/* SHARE All 3 */
TT, Scoreboard_ILF SHARE ALL writing;

/* SHARE All 4 */
TT, Merchandise_EIF SHARE ALL writing;

 184

D. MP SCHEMA FOR COURSE OF ACTION 4

/* Name: MP SCHEMA COA 4 Nested COORDINATEs for Data and Transactional Functions.

Purpose: The It’s Tee Time example for UFP estimate is derived from the It’s TeeTime
counting example, courtesy of Q/P Management Group. Tee Time source information is
protected by copyright [56]. This example was refined and improvised by Monica Farah-
Stapleton 06/20/16, and updated by Prof Mikhail Auguston, 06/22/16.

 Tool Used: MP Analyzed on Firebird
 Scope: 1 */

SCHEMA TeeTime_Nested COORDINATEs_Trans_Data

/* ROOT User: Behaviors executed by the User of the It’s Tee Time application */

 ROOT User: (* ((inquire_on_state_data
 inquire_on_city_data
 inquire_on_golfcourse_list
 (* (inquire_on_golfcourse_detail | go_back)*)
 inquire_on_reservation_display
 (input_add_reservation_data |
 input_change_reservation_data |
 input_delete_reservation_data)
 inquire_on_maintain_golfcourses
 (input_add_maintain_golfcourses_data |
 input_change_maintain_golfcourses_data |
 input_delete_maintain_golfcourses_data))
 inquire_on_scoreboard_display
 (input_add_scoreboard_data |
 input_change_scoreboard_data |
 input_delete_scoreboard_data)
 inquire_on_shopping_display
 (* (inquire_on_product_display
 calculate_total_amount
 buy_product)*)
 | exit)
 *);

 inquire_on_state_data: click_state_arrow_dropdown receive_state_list_display;
 inquire_on_city_data: view_state_data_entered click_on_city_arrow_dropdown
 receive_city_list_display;

inquire_on_golfcourse_list: view_state_data_entered view_city_data_entered
 click_list_display_button view_golfcourse_name_displayed;

inquire_on_golfcourse_detail: click_icon_from_golfcourse_list request_id
 request_name request_address request_city request_state request_zip
 request_phone request_description request_slope request_fees
 request_requirements;

inquire_on_reservation_display: carryover_id carryover_coursename

 185

 click_on_date_dropdown click_display request_time request_no_of_players
 request_no_of_holes request_name request_cc_type request_cc_no
 request_phone_no;

input_add_reservation_data: input_id input_coursename input_date
 input_time
 input_no_players input_no_holes input_name input_cc_type input_cc_no
 input_phone_no click_add_button receive_error_confirmation_message;

input_change_reservation_data: input_change_id input_change_coursename
 input_change_date input_change_time input_change_no_players
 input_change_no_holes
 input_change_name input_change_cc_type input_change_cc_no
 input_change_phone_no click_change_button receive_error_confirmation_message;

input_delete_reservation_data: input_delete_id input_delete_coursename
 input_delete_date input_delete_time click_delete_button
 receive_error_confirmation_message;

inquire_on_maintain_golfcourses: enter_coursename click_display_button request_id
 request_address request_city request_state request_zip request_phone
 request_description request_slope request_fees request_requirements
 receive_error_confirmation_message;

input_add_maintain_golfcourses_data: input_add_coursename input_add_address
 input_add_city
 input_add_state input_add_zip input_add_phone input_add_description
 input_add_slope input_add_fees input_add_requirements click_add_button receive_id
 receive_error_confirmation_message;

input_change_maintain_golfcourses_data: input_change_coursename input_change_address
 input_change_city input_change_state input_change_zip
 input_change_phone input_change_description input_change_slope
 input_change_fees input_change_requirements click_change_button
 receive_id receive_error_confirmation_message;

input_delete_maintain_golfcourses_data: input_delete_id click_delete_button
 receive_error_confirmation_message;

inquire_on_scoreboard_display: click_scoreboard_icon request_name request_course
 request_date request_slope request_score;

input_add_scoreboard_data: input_add_name input_add_course input_add_date
 input_add_slope input_add_score click_add_button
 receive_error_confirmation_message;

input_change_scoreboard_data: input_change_name input_change_course
 input_change_date input_change_slope input_change_score
 click_change_button receive_error_confirmation_message;

 186

input_delete_scoreboard_data: highlight_name click_delete_button
 receive_error_confirmation_message;

inquire_on_shopping_display: click_teetime_shopping_icon request_product request_unit_price;

inquire_on_product_display: click_view_icon request_image receive_error_confirmation_message;

calculate_total_amount: enter_quantity calculate_price_action calculate_price
 calculate_quantity calculate_total_for_row calculate_total_bill
 receive_error_confirmation_message;

buy_product: click_buy_button receive_product receive_price receive_quantity
 receive_row_total receive_bill_total receive_cc_type receive_cc_number
 receive_expiration_date receive_mailing_name receive_address receive_city
 receive_state receive_zip receive_error_confirmation_message;

/* ROOT TT_GC_ILF: The combined, relevant behaviors of the IAA and Golfcourses ILF */

ROOT TT_GC_ILF: (* (get_state_result
 get_city_result
 get_golfcourse_list_result
 get_golfcourse_detail_result
 get_maintain_golfcourses_result
 (*(add_maintain_golfcourses_data |
 change_maintain_golfcourses_data |
 delete_maintain_golfcourses_data)*))

 *);

get_state_result: receive_state_arrow_prompt send_state_list_display;

get_city_result: send_state_data_entered receive_city_arrow_prompt
 send_city_list_display;

get_golfcourse_list_result: send_state_data_entered send_city_data_entered
 receive_list_display_button_prompt send_golfcourse_name_displayed;

get_golfcourse_detail_result: get_golfcourse_detail_results send_id
 send_name send_address send_city send_state send_zip
 send_phone send_description send_slope send_fees
 send_requirements;

get_maintain_golfcourses_result: view_coursename receive_display_button_prompt send_id
 send_address send_city send_state send_zip send_phone send_description
 send_slope send_fees send_requirements send_error_confirmation_message;

 187

add_maintain_golfcourses_data: add_coursename add_address add_city
 add_state add_zip add_phone add_description add_slope
 add_fees add_requirements receive_add_button_prompt send_id
 send_error_confirmation_message;

change_maintain_golfcourses_data: change_coursename change_address change_city
 change_state change_zip change_phone change_description change_slope
 change_fees change_requirements receive_change_button_prompt send_id
 send_error_confirmation_message;

delete_maintain_golfcourses_data: delete_id receive_delete_button_prompt
 send_error_confirmation_message;

/* ROOT TT_Teetimes_ILF: The combined, relevant behaviors of the IAA and Teetimes ILF */

ROOT TT_Teetimes_ILF: (get_reservation_display_result
 (*(add_reservation_data
 | change_reservation_data
 | delete_reservation_data)*)
);

get_reservation_display_result: display_id display_coursename display_date
 send_display_results send_time send_no_of_players send_no_of_holes
 send_name send_cc_type send_cc_no send_phone_no;

add_reservation_data: add_id add_coursename add_date add_time
 add_no_players add_no_holes add_name add_cc_type add_cc_no

 add_phone_no receive_add_button_response send_error_confirmation_message;

change_reservation_data: change_id change_coursename
 change_date change_time change_no_players change_no_holes
 change_name change_cc_type change_cc_no
 change_phone_no receive_change_button_response
 send_error_confirmation_message;

delete_reservation_data: delete_id delete_coursename
 delete_date delete_time receive_delete_button_response
 send_error_confirmation_message;

/* ROOT TT_Scoreboard_ILF: The combined, relevant behaviors of the IAA and Scoreboard ILF */

 188

ROOT TT_Scoreboard_ILF: (get_scoreboard_display_result
 (*(add_scoreboard_data
 | change_scoreboard_data
 | delete_scoreboard_data)*)
);

get_scoreboard_display_result: receive_scoreboard_icon_prompt send_name send_course
 send_date send_slope send_score;

add_scoreboard_data: add_name add_course add_date add_slope add_score
 receive_add_button_response send_error_confirmation_message;

change_scoreboard_data: change_name change_course change_date change_slope
 change_score receive_change_button_response send_error_confirmation_message;

delete_scoreboard_data: delete_name receive_delete_button_prompt
 send_error_confirmation_message;

/* ROOT TT_Merchandise_EIF: The combined, relevant behaviors of the IAA and Merchandise EIF */

ROOT TT_Merchandise_EIF: (get_shopping_display_result
 (*(get_product_display_result get_calculated_total_amount
 send_calculated_amount_to_purchasing)*)
);

get_shopping_display: receive_teetime_shopping_icon_prompt send_product
 send_unit_price;

get_product_display: receive_view_icon_prompt send_image
 send_error_confirmation_message;

get_calculated_total_amount: receive_quantity receive_calculate_price_action_prompt
 send_price send_quantity send_total_for_row send_total_bill
 send_error_confirmation_message;

send_calculated_amount_to_purchasing: receive_buy_button_prompt send_product
 send_price send_quantity send_row_total send_bill_total send_cc_type
 send_cc_number send_expiration_date send_mailing_name send_address
 send_city send_state send_zip
 send_error_confirmation_message;

/* COORDINATE 1: Interaction between the User behaviors and TT/Golfcourses ILF behaviors , and nested
COORDINATE with 2 ADDs representing 2 DETs */

COORDINATE $a:inquire_on_state_data FROM User,

 189

 $b:get_state_result FROM TT_GC_ILF

DO

 COORDINATE

 $ax: click_state_arrow_dropdown FROM $a,
 $bx: receive_state_arrow_prompt FROM $b,
 $axx: receive_state_list_display FROM $a,
 $bxx: send_state_list_display FROM $b
 DO

 ADD $ax PRECEDES $bx;
 ADD $bxx PRECEDES $axx;
 OD;
OD;

/* COORDINATE 2: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 3 ADDs representing 3 DETs*/

COORDINATE $c:inquire_on_city_data FROM User,
 $d:get_city_result FROM TT_GC_ILF

DO

 COORDINATE

 $cx1: view_state_data_entered FROM $c,
 $dx1: send_state_data_entered FROM $d,
 $cx2: click_on_city_arrow_dropdown FROM $c,
 $dx2: receive_city_arrow_prompt FROM $d,
 $cx3: receive_city_list_display FROM $c,
 $dx3: send_city_list_display FROM $d

 DO
 ADD $cx1 PRECEDES $dx1;
 ADD $cx2 PRECEDES $dx2;
 ADD $dx3 PRECEDES $cx3;

 OD;
OD;

/* COORDINATE 3: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 4 ADDs representing 4 DETs */

COORDINATE $e:inquire_on_golfcourse_list FROM User,
 $f:get_golfcourse_list_result FROM TT_GC_ILF

 190

DO

COORDINATE
 $ex1: view_state_data_entered FROM $e,
 $fx1: send_state_data_entered FROM $f,
 $ex2: view_city_data_entered FROM $e,
 $fx2: send_city_data_entered FROM $f,
 $ex3: click_list_display_button FROM $e,
 $fx3: receive_list_display_button_prompt FROM $f,
 $ex4: view_golfcourse_name_displayed FROM $e,
 $fx4: send_golfcourse_name_displayed FROM $f

 DO
 ADD $ex1 PRECEDES $fx1;
 ADD $ex2 PRECEDES $fx2;
 ADD $ex3 PRECEDES $fx3;
 ADD $fx4 PRECEDES $ex4;

 OD;
OD;

/* COORDINATE 4: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 12 ADDs representing 12 DETs */

COORDINATE $g: inquire_on_golfcourse_detail FROM User,
 $h: get_golfcourse_detail_result FROM TT_GC_ILF

DO

COORDINATE

 $gx1: click_icon_from_golfcourse_list FROM $g,
 $hx1: get_golfcourse_detail_results FROM $h,
 $gx2: request_id FROM $g,
 $hx2: send_id FROM $h,
 $gx3: request_name FROM $g,
 $hx3: send_name FROM $h,
 $gx4: request_address FROM $g,
 $hx4: send_address FROM $h,
 $gx5: request_city FROM $g,
 $hx5: send_city FROM $h,
 $gx6: request_state FROM $g,
 $hx6: send_state FROM $h,
 $gx7: request_zip FROM $g,
 $hx7: send_zip FROM $h,
 $gx8: request_phone FROM $g,

 191

 $hx8: send_phone FROM $h,
 $gx9: request_description FROM $g,
 $hx9: send_description FROM $h,
 $gx10: request_slope FROM $g,
 $hx10: send_slope FROM $h,
 $gx11: request_fees FROM $g,
 $hx11: send_fees FROM $h,
 $gx12: request_requirements FROM $g,
 $hx12: send_requirements FROM $h

 DO
 ADD $gx1 PRECEDES $hx1;
 ADD $gx2 PRECEDES $hx2;
 ADD $gx3 PRECEDES $hx3;
 ADD $gx4 PRECEDES $hx4;
 ADD $gx5 PRECEDES $hx5;
 ADD $gx6 PRECEDES $hx6;
 ADD $gx7 PRECEDES $hx7;
 ADD $gx8 PRECEDES $hx8;
 ADD $gx9 PRECEDES $hx9;
 ADD $gx10 PRECEDES $hx10;
 ADD $gx11 PRECEDES $hx11;
 ADD $hx12 PRECEDES $gx12;

 OD;
OD;

/* COORDINATE 5: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested
COORDINATE with 11 ADDs representing 11 DETs */

COORDINATE $i:inquire_on_reservation_display FROM User,
 $j:get_reservation_display_result FROM TT_Teetimes_ILF

 DO

 COORDINATE

 $ix1: carryover_id FROM $i,
 $jx1: display_id FROM $j,
 $ix2: carryover_coursename FROM $i,
 $jx2: display_coursename FROM $j,
 $ix3: click_on_date_dropdown FROM $i,
 $jx3: display_date FROM $j,
 $ix4: click_display FROM $i,
 $jx4: send_display_results FROM $j,
 $ix5: request_time FROM $i,
 $jx5: send_time FROM $j,
 $ix6: request_no_of_players FROM $i,

 192

 $jx6: send_no_of_players FROM $j,
 $ix7: request_no_of_holes FROM $i,
 $jx7: send_no_of_holes FROM $j,
 $ix8: request_name FROM $i,
 $jx8: send_name FROM $j,
 $ix9: request_cc_type FROM $i,
 $jx9: send_cc_type FROM $j,
 $ix10: request_cc_no FROM $i,
 $jx10: send_cc_no FROM $j,
 $ix11: request_phone_no FROM $i,
 $jx11: send_phone_no FROM $j

 DO
 ADD $ix1 PRECEDES $jx1;
 ADD $ix2 PRECEDES $jx2;
 ADD $ix3 PRECEDES $jx3;
 ADD $ix4 PRECEDES $jx4;
 ADD $ix5 PRECEDES $jx5;
 ADD $ix6 PRECEDES $jx6;
 ADD $ix7 PRECEDES $jx7;
 ADD $ix8 PRECEDES $jx8;
 ADD $ix9 PRECEDES $jx9;
 ADD $ix10 PRECEDES $jx10;
 ADD $jx11 PRECEDES $ix11;

 OD;
OD;

/* COORDINATE 6: Interaction between the User behaviors and TT/Teetimes ILF behaviors and nested
COORDINATE with 12 ADDs representing 12 DETs */

COORDINATE $k: input_add_reservation_data FROM User,
 $l:add_reservation_data FROM TT_Teetimes_ILF
DO

 COORDINATE

 $kx1: input_id FROM $k,
 $lx1: add_id FROM $l,
 $kx2: input_coursename FROM $k,
 $lx2: add_coursename FROM $l,
 $kx3: input_date FROM $k,
 $lx3: add_date FROM $l,
 $kx4: input_time FROM $k,
 $lx4: add_time FROM $l,
 $kx5: input_no_players FROM $k,
 $lx5: add_no_players FROM $l,
 $kx6: input_no_holes FROM $k,
 $lx6: add_no_holes FROM $l,

 193

 $kx7: input_name FROM $k,
 $lx7: add_name FROM $l,
 $kx8: input_cc_type FROM $k,
 $lx8: add_cc_type FROM $l,
 $kx9: input_cc_no FROM $k,
 $lx9: add_cc_no FROM $l,
 $kx10: input_phone_no FROM $k,
 $lx10: add_phone_no FROM $l,
 $kx11: click_add_button FROM $k,
 $lx11: receive_add_button_response FROM $l,
 $kx12: receive_error_confirmation_message FROM $k,
 $lx12: send_error_confirmation_message FROM $l

 DO

 ADD $kx1 PRECEDES $lx1;
 ADD $kx2 PRECEDES $lx2;
 ADD $kx3 PRECEDES $lx3;
 ADD $kx4 PRECEDES $lx4;
 ADD $kx5 PRECEDES $lx5;
 ADD $kx6 PRECEDES $lx6;
 ADD $kx7 PRECEDES $lx7;
 ADD $kx8 PRECEDES $lx8;
 ADD $kx9 PRECEDES $lx9;
 ADD $kx10 PRECEDES $lx10;
 ADD $kx11 PRECEDES $lx11;
 ADD $lx12 PRECEDES $kx12;

 OD;
OD;

/* COORDINATE 7: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested
COORDINATE with 12 ADDs representing 12 DETs */

COORDINATE $m: input_change_reservation_data FROM User,
 $n:change_reservation_data FROM TT_Teetimes_ILF

DO

 COORDINATE

 $mx1: input_change_id FROM $m,
 $nx1: change_id FROM $n,
 $mx2: input_change_coursename FROM $m,
 $nx2: change_coursename FROM $n,
 $mx3: input_change_date FROM $m,
 $nx3: change_date FROM $n,
 $mx4: input_change_time FROM $m,

 194

 $nx4: change_time FROM $n,
 $mx5: input_change_no_players FROM $m,
 $nx5: change_no_players FROM $n,
 $mx6: input_change_no_holes FROM $m,
 $nx6: change_no_holes FROM $n,
 $mx7: input_change_name FROM $m,
 $nx7: change_name FROM $n,
 $mx8: input_change_cc_type FROM $m,
 $nx8: change_cc_type FROM $n,
 $mx9: input_change_cc_no FROM $m,
 $nx9: change_cc_no FROM $n,
 $mx10: input_change_phone_no FROM $m,
 $nx10: change_phone_no FROM $n,
 $mx11: click_change_button FROM $m,
 $nx11: receive_change_button_response FROM $n,
 $mx12: receive_error_confirmation_message FROM $m,
 $nx12: send_error_confirmation_message FROM $n

 DO

 ADD $mx1 PRECEDES $nx1;
 ADD $mx2 PRECEDES $nx2;
 ADD $mx3 PRECEDES $nx3;
 ADD $mx4 PRECEDES $nx4;
 ADD $mx5 PRECEDES $nx5;
 ADD $mx6 PRECEDES $nx6;
 ADD $mx7 PRECEDES $nx7;
 ADD $mx8 PRECEDES $nx8;
 ADD $mx9 PRECEDES $nx9;
 ADD $mx10 PRECEDES $nx10;
 ADD $mx11 PRECEDES $nx11;
 ADD $nx12 PRECEDES $mx12;
 OD;
OD;

/* COORDINATE 8: Interaction between the User behaviors and TT/Teetimes ILF behaviors, and nested
COORDINATE with 6 ADDs representing 6 DETs */

COORDINATE $o:input_delete_reservation_data FROM User,
 $p:delete_reservation_data FROM TT_Teetimes_ILF
DO

 COORDINATE

 $ox1: input_delete_id FROM $o,
 $px1: delete_id FROM $p,
 $ox2: input_delete_coursename FROM $o,

 195

 $px2: delete_coursename FROM $p,
 $ox3: input_delete_date FROM $o,
 $px3: delete_date FROM $p,
 $ox4: input_delete_time FROM $o,
 $px4: delete_time FROM $p,
 $ox5: click_delete_button FROM $o,
 $px5: receive_delete_button_response FROM $p,
 $ox6: receive_error_confirmation_message FROM $o,
 $px6: send_error_confirmation_message FROM $p

 DO
 ADD $ox1 PRECEDES $px1;
 ADD $ox2 PRECEDES $px2;
 ADD $ox3 PRECEDES $px3;
 ADD $ox4 PRECEDES $px4;
 ADD $ox5 PRECEDES $px5;
 ADD $px6 PRECEDES $ox6;
 OD;
OD;

/* COORDINATE 9: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and nested
COORDINATE with 13 ADDs representing 13 DETs */

COORDINATE $q:inquire_on_maintain_golfcourses FROM User,
 $r:get_maintain_golfcourses_result FROM TT_GC_ILF

 DO

 COORDINATE

 $qx1: enter_coursename FROM $q,
 $rx1: view_coursename FROM $r,
 $qx2: click_display_button FROM $q,
 $rx2: receive_display_button_prompt FROM $r,
 $qx3: request_id FROM $q,
 $rx3: send_id FROM $r,
 $qx4: request_address FROM $q,
 $rx4: send_address FROM $r,
 $qx5: request_city FROM $q,
 $rx5: send_city FROM $r,
 $qx6: request_state FROM $q,
 $rx6: send_state FROM $r,
 $qx7: request_zip FROM $q,
 $rx7: send_zip FROM $r,
 $qx8: request_phone FROM $q,
 $rx8: send_phone FROM $r,
 $qx9: request_description FROM $q,
 $rx9: send_description FROM $r,
 $qx10: request_slope FROM $q,

 196

 $rx10: send_slope FROM $r,
 $qx11: request_fees FROM $q,
 $rx11: send_fees FROM $r,
 $qx12: request_requirements FROM $q,
 $rx12: send_requirements FROM $r,
 $qx13: receive_error_confirmation_message FROM $q,
 $rx13: send_error_confirmation_message FROM $r

 DO
 ADD $qx1 PRECEDES $rx1;
 ADD $qx2 PRECEDES $rx2;
 ADD $qx3 PRECEDES $rx3;
 ADD $qx4 PRECEDES $rx4;
 ADD $qx5 PRECEDES $rx5;
 ADD $qx6 PRECEDES $rx6;
 ADD $qx7 PRECEDES $rx7;
 ADD $qx8 PRECEDES $rx8;
 ADD $qx9 PRECEDES $rx9;
 ADD $qx10 PRECEDES $rx10;
 ADD $qx11 PRECEDES $rx11;
 ADD $qx12 PRECEDES $rx12;
 ADD $rx13 PRECEDES $qx13;

 OD;
OD;

/* COORDINATE 10: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and
nested COORDINATE with 13 ADDs representing 13 DETs */

COORDINATE $s:input_add_maintain_golfcourses_data FROM User,
 $t:add_maintain_golfcourses_data FROM TT_GC_ILF
 DO

 COORDINATE

 $sx1: input_add_coursename FROM $s,
 $tx1: add_coursename FROM $t,
 $sx2: input_add_address FROM $s,
 $tx2: add_address FROM $t,
 $sx3: input_add_city FROM $s,
 $tx3: add_city FROM $t,
 $sx4: input_add_state FROM $s,
 $tx4: add_state FROM $t,
 $sx5: input_add_zip FROM $s,
 $tx5: add_zip FROM $t,
 $sx6: input_add_phone FROM $s,

 197

 $tx6: add_phone FROM $t,
 $sx7: input_add_description FROM $s,
 $tx7: add_description FROM $t,
 $sx8: input_add_slope FROM $s,
 $tx8: add_slope FROM $t,
 $sx9: input_add_fees FROM $s,
 $tx9: add_fees FROM $t,
 $sx10: input_add_requirements FROM $s,
 $tx10: add_requirements FROM $t,
 $sx11: click_add_button FROM $s,
 $tx11: receive_add_button_prompt FROM $t,
 $sx12: receive_id FROM $s,
 $tx12: send_id FROM $t,
 $sx13: receive_error_confirmation_message FROM $s,
 $tx13: send_error_confirmation_message FROM $t

 DO
 ADD $sx1 PRECEDES $tx1;
 ADD $sx2 PRECEDES $tx2;
 ADD $sx3 PRECEDES $tx3;
 ADD $sx4 PRECEDES $tx4;
 ADD $sx5 PRECEDES $tx5;
 ADD $sx6 PRECEDES $tx6;
 ADD $sx7 PRECEDES $tx7;
 ADD $sx8 PRECEDES $tx8;
 ADD $sx9 PRECEDES $tx9;
 ADD $sx10 PRECEDES $tx10;
 ADD $sx11 PRECEDES $tx11;
 ADD $tx12 PRECEDES $sx12;
 ADD $tx13 PRECEDES $sx13;

 OD;
OD;

/* COORDINATE 11: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and
nested COORDINATE with 13 ADDs representing 13 DETs */

COORDINATE $u:input_change_maintain_golfcourses_data FROM User,
 $v:change_maintain_golfcourses_data FROM TT_GC_ILF

 DO

 COORDINATE

 $ux1: input_change_coursename FROM $u,
 $vx1: change_coursename FROM $v,
 $ux2: input_change_address FROM $u,
 $vx2: change_address FROM $v,
 $ux3: input_change_city FROM $u,
 $vx3: change_city FROM $v,

 198

 $ux4: input_change_state FROM $u,
 $vx4: change_state FROM $v,
 $ux5: input_change_zip FROM $u,
 $vx5: change_zip FROM $v,
 $ux6: input_change_phone FROM $u,
 $vx6: change_phone FROM $v,
 $ux7: input_change_description FROM $u,
 $vx7: change_description FROM $v,
 $ux8: input_change_slope FROM $u,
 $vx8: change_slope FROM $v,
 $ux9: input_change_fees FROM $u,
 $vx9: change_fees FROM $v,
 $ux10: input_change_requirements FROM $u,
 $vx10: change_requirements FROM $v,
 $ux11: click_change_button FROM $u,
 $vx11: receive_change_button_prompt FROM $v,
 $ux12: receive_id FROM $u,
 $vx12: send_id FROM $v,
 $ux13: receive_error_confirmation_message FROM $u,
 $vx13: send_error_confirmation_message FROM $v

 DO
 ADD $ux1 PRECEDES $vx1;
 ADD $ux2 PRECEDES $vx2;
 ADD $ux3 PRECEDES $vx3;
 ADD $ux4 PRECEDES $vx4;
 ADD $ux5 PRECEDES $vx5;
 ADD $ux6 PRECEDES $vx6;
 ADD $ux7 PRECEDES $vx7;
 ADD $ux8 PRECEDES $vx8;
 ADD $ux9 PRECEDES $vx9;
 ADD $ux10 PRECEDES $vx10;
 ADD $ux11 PRECEDES $vx11;
 ADD $vx12 PRECEDES $ux12;
 ADD $vx13 PRECEDES $ux13;

 OD;
OD;

/* COORDINATE 12: Interaction between the User behaviors and TT/Golfcourses ILF behaviors, and
nested COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $w:input_delete_maintain_golfcourses_data FROM User,
 $x:delete_maintain_golfcourses_data FROM TT_GC_ILF

DO

 199

 COORDINATE

 $wx1: input_delete_id FROM $w,
 $xx1: delete_id FROM $x,
 $wx2: click_delete_button FROM $w,
 $xx2: receive_delete_button_prompt FROM $x,
 $wx3: input_change_city FROM $w,
 $xx3: change_city FROM $x

 DO
 ADD $wx1 PRECEDES $xx1;
 ADD $xx2 PRECEDES $wx2;
 ADD $xx3 PRECEDES $wx3;

 OD;
OD;

/* COORDINATE 13: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 6 ADDs representing 6 DETs */

COORDINATE $y: inquire_on_scoreboard_display FROM User,
 $z: get_scoreboard_display_result FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $yx1: click_scoreboard_icon FROM $y,
 $zx1: receive_scoreboard_icon_prompt FROM $z,
 $yx2: request_name FROM $y,
 $zx2: send_name FROM $z,
 $yx3: request_course FROM $y,
 $zx3: send_course FROM $z,
 $yx4: request_date FROM $y,
 $zx4: send_date FROM $z,
 $yx5: request_slope FROM $y,
 $zx5: send_slope FROM $z,
 $yx6: request_score FROM $y,
 $zx6: send_score FROM $z

 DO
 ADD $yx1 PRECEDES $zx1;
 ADD $yx2 PRECEDES $zx2;
 ADD $yx3 PRECEDES $zx3;
 ADD $yx4 PRECEDES $zx4;
 ADD $yx5 PRECEDES $zx5;

 200

 ADD $yx6 PRECEDES $zx6;

 OD;
OD;

/* COORDINATE 14: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 7 ADDs representing 7 DETs */

COORDINATE $aa: input_add_scoreboard_data FROM User,
 $bb: add_scoreboard_data FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $aax1: input_add_name FROM $aa,
 $bbx1: add_name FROM $bb,
 $aax2: input_add_course FROM $aa,
 $bbx2: add_course FROM $bb,
 $aax3: input_add_date FROM $aa,
 $bbx3: add_date FROM $bb,
 $aax4: input_add_slope FROM $aa,
 $bbx4: add_slope FROM $bb,
 $aax5: input_add_score FROM $aa,
 $bbx5: add_score FROM $bb,
 $aax6: click_add_button FROM $aa,
 $bbx6: receive_add_button_response FROM $bb,
 $aax7: receive_error_confirmation_message FROM $aa,
 $bbx7: send_error_confirmation_message FROM $bb

 DO
 ADD $aax1 PRECEDES $bbx1;
 ADD $aax2 PRECEDES $bbx2;
 ADD $aax3 PRECEDES $bbx3;
 ADD $aax4 PRECEDES $bbx4;
 ADD $aax5 PRECEDES $bbx5;
 ADD $aax6 PRECEDES $bbx6;
 ADD $aax7 PRECEDES $bbx7;

 OD;
OD;

/* COORDINATE 15: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 7 ADDs representing 7 DETs */

COORDINATE $cc: input_change_scoreboard_data FROM User,

 201

 $dd: change_scoreboard_data FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $ccx1: input_change_name FROM $cc,
 $ddx1: change_name FROM $dd,
 $ccx2: input_change_course FROM $cc,
 $ddx2: change_course FROM $dd,
 $ccx3: input_change_date FROM $cc,
 $ddx3: change_date FROM $dd,
 $ccx4: input_change_slope FROM $cc,
 $ddx4: change_slope FROM $dd,
 $ccx5: input_change_score FROM $cc,
 $ddx5: change_score FROM $dd,
 $ccx6: click_change_button FROM $cc,
 $ddx6: receive_change_button_response FROM $dd,
 $ccx7: receive_error_confirmation_message FROM $cc,
 $ddx7: send_error_confirmation_message FROM $dd

 DO
 ADD $ccx1 PRECEDES $ddx1;
 ADD $ccx2 PRECEDES $ddx2;
 ADD $ccx3 PRECEDES $ddx3;
 ADD $ccx4 PRECEDES $ddx4;
 ADD $ccx5 PRECEDES $ddx5;
 ADD $ccx6 PRECEDES $ddx6;
 ADD $ccx7 PRECEDES $ddx7;

 OD;
OD;

/* COORDINATE 16: Interaction between the User behaviors and TT/Scoreboard ILF behaviors, and nested
COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $ee: input_delete_scoreboard_data FROM User,
 $ff: delete_scoreboard_data FROM TT_Scoreboard_ILF

DO

 COORDINATE

 $eex1: highlight_name FROM $ee,
 $ffx1: delete_name FROM $ff,
 $eex2: click_delete_button FROM $ee,
 $ffx2: receive_delete_button_prompt FROM $ff,
 $eex3: receive_error_confirmation_message FROM $ee,
 $ffx3: send_error_confirmation_message FROM $ff

 202

 DO
 ADD $eex1 PRECEDES $ffx1;
 ADD $eex2 PRECEDES $ffx2;
 ADD $ffx3 PRECEDES $eex3;

 OD;
OD;

/* COORDINATE 17: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and
nested COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $gg: inquire_on_shopping_display FROM User,
 $hh: get_shopping_display_result FROM TT_Merchandise_EIF

DO

 COORDINATE

 $ggx1: click_teetime_shopping_icon FROM $gg,
 $hhx1: receive_teetime_shopping_icon_prompt FROM $hh,
 $ggx2: request_product FROM $gg,
 $hhx2: send_product FROM $hh,
 $ggx3: request_unit_price FROM $gg,
 $hhx3: send_unit_price FROM $hh

 DO
 ADD $ggx1 PRECEDES $hhx1;
 ADD $ggx2 PRECEDES $hhx2;
 ADD $hhx3 PRECEDES $ggx3;

 OD;
OD;

/* COORDINATE 18: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and
nested COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $ii:inquire_on_product_display FROM User,
 $jj:get_product_display_result FROM TT_Merchandise_EIF

DO

 203

 COORDINATE

 $iix1: click_view_icon FROM $ii,
 $jjx1: receive_view_icon_prompt FROM $jj,
 $iix2: request_image FROM $ii,
 $jjx2: send_image FROM $jj,
 $iix3: receive_error_confirmation_message FROM $ii,
 $jjx3: send_error_confirmation_message FROM $jj

 DO
 ADD $iix1 PRECEDES $jjx1;
 ADD $iix2 PRECEDES $jjx2;
 ADD $jjx3 PRECEDES $iix3;

 OD;
OD;

/* COORDINATE 19: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and
nested COORDINATE with 7 ADDs representing 7 DETs */

COORDINATE $kk: calculate_total_amount FROM User,
 $ll:get_calculated_total_amount FROM TT_Merchandise_EIF

DO

 COORDINATE

 $kkx1: enter_quantity FROM $kk,
 $llx1: receive_quantity FROM $ll,
 $kkx2: calculate_price_action FROM $kk,
 $llx2: receive_calculate_price_action_prompt FROM $ll,
 $kkx3: calculate_price FROM $kk,
 $llx3: send_price FROM $ll,
 $kkx4: calculate_quantity FROM $kk,
 $llx4: send_quantity FROM $ll,
 $kkx5: calculate_total_for_row FROM $kk,
 $llx5: send_total_for_row FROM $ll,
 $kkx6: calculate_total_bill FROM $kk,
 $llx6: send_total_bill FROM $ll,
 $kkx7: receive_error_confirmation_message FROM $kk,
 $llx7: receive_error_confirmation_message FROM $ll

 DO
 ADD $kkx1 PRECEDES $llx1;
 ADD $kkx2 PRECEDES $llx2;

 204

 ADD $kkx3 PRECEDES $llx3;
 ADD $kkx4 PRECEDES $llx4;
 ADD $kkx5 PRECEDES $llx5;
 ADD $kkx6 PRECEDES $llx6;
 ADD $llx7 PRECEDES $kkx7;

 OD;
OD;

/* COORDINATE 20: Interaction between the User behaviors and TT/Merchandise EIF behaviors, and
nested COORDINATE with 15 ADDs representing 15 DETs */

COORDINATE $mm: buy_product FROM User,
 $nn: send_calculated_amount_to_purchasing FROM TT_Merchandise_EIF

DO

 COORDINATE

 $mmx1: click_buy_button FROM $mm,
 $nnx1: receive_buy_button_prompt FROM $nn,
 $mmx2: receive_product FROM $mm,
 $nnx2: send_product FROM $nn,
 $mmx3: receive_price FROM $mm,
 $nnx3: send_price FROM $nn,
 $mmx4: receive_quantity FROM $mm,
 $nnx4: send_quantity FROM $nn,
 $mmx5: receive_row_total FROM $mm,
 $nnx5: send_row_total FROM $nn,
 $mmx6: receive_bill_total FROM $mm,
 $nnx6: send_bill_total FROM $nn,
 $mmx7: receive_cc_type FROM $mm,
 $nnx7: send_cc_type FROM $nn,
 $mmx8: receive_cc_number FROM $mm,
 $nnx8: send_cc_number FROM $nn,
 $mmx9: receive_expiration_date FROM $mm,
 $nnx9: send_expiration_date FROM $nn,
 $mmx10: receive_mailing_name FROM $mm,
 $nnx10: send_mailing_name FROM $nn,
 $mmx11: receive_address FROM $mm,
 $nnx11: send_address FROM $nn,
 $mmx12: receive_city FROM $mm,
 $nnx12: send_city FROM $nn,
 $mmx13: receive_state FROM $mm,
 $nnx13: send_state FROM $nn,
 $mmx14: receive_zip FROM $mm,

 205

 $nnx14: send_zip FROM $nn,
 $mmx15: receive_error_confirmation_message FROM $mm,
 $nnx15: send_error_confirmation_message FROM $nn

 DO
 ADD $mmx1 PRECEDES $nnx1;
 ADD $mmx2 PRECEDES $nnx2;
 ADD $mmx3 PRECEDES $nnx3;
 ADD $mmx4 PRECEDES $nnx4;
 ADD $mmx5 PRECEDES $nnx5;
 ADD $mmx6 PRECEDES $nnx6;
 ADD $mmx7 PRECEDES $nnx7;
 ADD $mmx8 PRECEDES $nnx8;
 ADD $mmx9 PRECEDES $nnx9;
 ADD $mmx10 PRECEDES $nnx10;
 ADD $mmx11 PRECEDES $nnx11;
 ADD $mmx12 PRECEDES $nnx12;
 ADD $mmx13 PRECEDES $nnx13;
 ADD $mmx14 PRECEDES $nnx14;
 ADD $nnx15 PRECEDES $mmx15;

 OD;
OD;

/* Data Function Calculation using COORDINATEs */

/* ROOT TT: The relevant behaviors of the IAA */

ROOT TT: (* (request | no_action) *);

request: request_GC_id request_GC_coursename request_GC_address
request_GC_city request_GC_state request_GC_zip request_GC_phone
 request_GC_description request_GC_slope request_GC_fees
 request_GC_requirements

 request_TT_id request_TT_coursename request_TT_date_repeating
 request_TT_teetime request_TT_no_players
 request_TT_no_holes request_TT_golfer_name request_TT_credit_card_type
 request_TT_credit_card_number request_TT_phone_number

 request_scoreboard_golfer_name request_scoreboard_coursename
 request_scoreboard_date request_scoreboard_slope
 request_scoreboard_score

 request_Merch_product_name request_Merch_price request_Merch_picture;

 206

/* ROOT GC_ILF: The relevant behaviors of the Golfcourses ILF */

ROOT GC_ILF: (*(respond | no_action)*);

respond: respond_GC_id respond_GC_coursename respond_GC_address
respond_GC_city respond_GC_state respond_GC_zip respond_GC_phone
 respond_GC_description respond_GC_slope respond_GC_fees
 respond_GC_requirements;

/* ROOT Teetimes_ILF: The relevant behaviors of the Teetimes ILF */

ROOT Teetimes_ILF: (*(respond1 | no_action)*);
respond1: respond_TT_id respond_TT_coursename
respond_TT_date_repeating respond_TT_teetime
respond_TT_no_players respond_TT_no_holes respond_TT_golfer_name
respond_TT_credit_card_type respond_TT_credit_card_number
respond_TT_phone_number;

/* ROOT Scoreboard_ILF: The relevant behaviors of the Scoreboard ILF */

ROOT Scoreboard_ILF: (* (respond2 | no_action) *);
respond2: respond_scoreboard_golfer_name respond_scoreboard_coursename
 respond_scoreboard_date respond_scoreboard_slope respond_scoreboard_score;

/* ROOT Merchandise_EIF: The relevant behaviors of the Merchandise EIF */
ROOT Merchandise_EIF: (*(respond3 | no action)*);
respond3: respond_Merch_product_name respond_Merch_price
respond_Merch_picture;

/* COORDINATE 21: Interaction between the TT IAA and the Golf Courses ILF, and nested COORDINATE
with 11 ADDs representing 11 DETs */

COORDINATE $oo: request FROM TT,
 $pp: respond FROM GC_ILF

DO

 COORDINATE

 $oox1: request_GC_id FROM $oo,
 $ppx1: respond_GC_id FROM $pp,
 $oox2: request_GC_coursename FROM $oo,
 $ppx2: respond_GC_coursename FROM $pp,
 $oox3: request_GC_address FROM $oo,

 207

 $ppx3: respond_GC_address FROM $pp,
 $oox4: request_GC_city FROM $oo,
 $ppx4: respond_GC_city FROM $pp,
 $oox5: request_GC_state FROM $oo,
 $ppx5: respond_GC_state FROM $pp,
 $oox6: request_GC_zip FROM $oo,
 $ppx6: respond_GC_zip FROM $pp,
 $oox7: request_GC_phone FROM $oo,
 $ppx7: respond_GC_phone FROM $pp,
 $oox8: request_GC_description FROM $oo,
 $ppx8: respond_GC_description FROM $pp,
 $oox9: request_GC_slope FROM $oo,
 $ppx9: respond_GC_slope FROM $pp,
 $oox10: request_GC_fees FROM $oo,
 $ppx10: respond_GC_fees FROM $pp,
 $oox11: request_GC_requirements FROM $oo,
 $ppx11: respond_GC_requirements FROM $pp

 DO
 ADD $oox1 PRECEDES $ppx1;
 ADD $oox2 PRECEDES $ppx2;
 ADD $oox3 PRECEDES $ppx3;
 ADD $oox4 PRECEDES $ppx4;
 ADD $oox5 PRECEDES $ppx5;
 ADD $oox6 PRECEDES $ppx6;
 ADD $oox7 PRECEDES $ppx7;
 ADD $oox8 PRECEDES $ppx8;
 ADD $oox9 PRECEDES $ppx9;
 ADD $oox10 PRECEDES $ppx10;
 ADD $oox11 PRECEDES $ppx11;

 OD;
OD;

/* COORDINATE 22: Interaction between the TT IAA and the Tee Times ILF, and nested COORDINATE with
10 ADDs representing 10 DETs */

COORDINATE $qq: request FROM TT,
 $rr: respond1 FROM Teetimes_ILF

DO

 COORDINATE

 $qqx1: request_TT_id FROM $qq,
 $rrx1: respond_TT_id FROM $rr,

 208

 $qqx2: request_TT_coursename FROM $qq,
 $rrx2: respond_TT_coursename FROM $rr,
 $qqx3: request_TT_date_repeating FROM $qq,
 $rrx3: respond_TT_date_repeating FROM $rr,
 $qqx4: request_TT_teetime FROM $qq,
 $rrx4: respond_TT_teetime FROM $rr,
 $qqx5: request_TT_no_players FROM $qq,
 $rrx5: respond_TT_no_players FROM $rr,
 $qqx6: request_TT_no_holes FROM $qq,
 $rrx6: respond_TT_no_holes FROM $rr,
 $qqx7: request_TT_golfer_name FROM $qq,
 $rrx7: respond_TT_golfer_name FROM $rr,
 $qqx8: request_TT_credit_card_type FROM $qq,
 $rrx8: respond_TT_credit_card_type FROM $rr,
 $qqx9: request_TT_credit_card_number FROM $qq,
 $rrx9: respond_TT_credit_card_number FROM $rr,
 $qqx10: request_TT_phone_number FROM $qq,
 $rrx10: respond_TT_phone_number FROM $rr

 DO
 ADD $qqx1 PRECEDES $rrx1;
 ADD $qqx2 PRECEDES $rrx2;
 ADD $qqx3 PRECEDES $rrx3;
 ADD $qqx4 PRECEDES $rrx4;
 ADD $qqx5 PRECEDES $rrx5;
 ADD $qqx6 PRECEDES $rrx6;
 ADD $qqx7 PRECEDES $rrx7;
 ADD $qqx8 PRECEDES $rrx8;
 ADD $qqx9 PRECEDES $rrx9;
 ADD $qqx10 PRECEDES $rrx10;

 OD;
OD;

/* COORDINATE 23: Interaction between the TT IAA and the Scoreboard ILF,
and nested COORDINATE with 5 ADDs representing 5 DETs */

COORDINATE $ss: request FROM TT,
 $tt: respond2 FROM Scoreboard_ILF

DO

 COORDINATE

 209

 $ssx1: request_scoreboard_golfer_name FROM $ss,
 $ttx1: respond_scoreboard_golfer_name FROM $tt,
 $ssx2: request_scoreboard_coursename FROM $ss,
 $ttx2: respond_scoreboard_coursename FROM $tt,
 $ssx3: request_scoreboard_date FROM $ss,
 $ttx3: respond_scoreboard_date FROM $tt,
 $ssx4: request_scoreboard_slope FROM $ss,
 $ttx4: respond_scoreboard_slope FROM $tt,
 $ssx5: request_scoreboard_score FROM $ss,
 $ttx5: respond_scoreboard_score FROM $tt

 DO
 ADD $ssx1 PRECEDES $ttx1;
 ADD $ssx2 PRECEDES $ttx2;
 ADD $ssx3 PRECEDES $ttx3;
 ADD $ssx4 PRECEDES $ttx4;
 ADD $ssx5 PRECEDES $ttx5;

 OD;
OD;

/* COORDINATE 24: Interaction between the TT IAA and the Merchandise EIF and
nested COORDINATE with 3 ADDs representing 3 DETs */

COORDINATE $uu: request FROM TT,
 $vv: respond3 FROM Merchandise_EIF

DO

 COORDINATE

 $uux1: request_Merch_product_name FROM $uu,
 $vvx1: respond_Merch_product_name FROM $vv,
 $uux2: request_Merch_price FROM $uu,
 $vvx2: respond_Merch_price FROM $vv,
 $uux3: request_Merch_picture FROM $uu,
 $vvx3: respond_Merch_picture FROM $vv

 DO
 ADD $uux1 PRECEDES $vvx1;
 ADD $uux2 PRECEDES $vvx2;
 ADD $uux3 PRECEDES $vvx3;

 OD;
OD;

 210

THIS PAGE INTENTIONALLY LEFT BLANK

 211

LIST OF REFERENCES

[1] N. Rozanski, and E. Woods, Software Systems Architecture, 2nd ed. Upper Saddle
River, NJ: Addison Wesley, 2012.

[2] R. Hamming, The Art of Doing SCIENCE and Engineering: Learning to Learn,
Boca Raton, FL: CRC Press, 1997.

[3] M. Auguston and C. Whitcomb, “Behavior models and composition for software
and systems architecture,” presented at the 24th ICSSEA Conference, Paris,
France, 2012.

[4] COCOMO II Model Definition Manual, Version 2000.3, USC Center for
Software Engineering. [Online]. Available:
http://csse.usc.edu/csse/affiliate/private/COCOMOII_2000_3/COCOMO_II_2000
_3.html. Accessed July 21, 2016.

[5] COCOMO II. (n.d.). USC Center for Systems and Software Engineering
(UCSSE). [Online]. Available:
http://csse.usc.edu/csse/research/COCOMOII/cocomo_main.htm. Accessed July
21, 2016.

[6] NPS Center for Educational Design, Development, and Distribution (CED3),
Monterey CA (2016), Firebird Analyzer 2.0. [Online]. Available:
http://firebird.nps.edu/. Accessed Aug. 3, 2016.

[7] Rivera Group. (2016). Eagle6. [Online]. Available:
http://www.riverainc.com/eagle6.php. Accessed Aug. 3, 2016.

[8] MIT Software Design Group, Cambridge, MA. (2016). Alloy Analyzer 4.2.
[Online]. Available: http://alloy.mit.edu/alloy/download.html. Accessed Aug. 3,
2016.

[9] Function Point Counting Practices Manual, Release 4.3.1, International Function
Point User Group (IFPUG), Princeton Junction, NJ, 2010.

[10] I. Sommerville, Software Engineering, 6th ed. Boston, MA: Addison-Wesley
Longman Publishing Co., Inc., 2001

[11] B. Boehm, J. Lane, S. Koolmanojwong, and R. Turner. The Incremental
Commitment Spiral Model, Principles and Practices for Successful Systems and
Software, Table 14-1 Estimation Method Comparison, 1st ed., Upper Saddle
River: NJ Addison Wesley, 2014, pp. 225.

http://csse.usc.edu/csse/affiliate/private/COCOMOII_2000_3/COCOMO_II_2000_3.html
http://csse.usc.edu/csse/affiliate/private/COCOMOII_2000_3/COCOMO_II_2000_3.html
http://csse.usc.edu/csse/research/COCOMOII/cocomo_main.htm
http://firebird.nps.edu/
http://www.riverainc.com/eagle6.php
http://alloy.mit.edu/alloy/download.html

 212

[12] COCOMO II Model Definition Manual v. 2.1. (1995–2000). USC Center for
Software Engineering, p. 6. [Online] Available:
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.
0.pdf Accessed . Accessed Aug 27, 2016.

[13] Princeton Junction. (n.d.). International Function Point Users Group [Online].
Available: http://www.ifpug.org/about-ifpug/Introduction/. Accessed Aug. 3,
2016.

[14] D. Garmus, J. Russac, and R. Edwards, Certified Function Point Specialist
Examination Guide, 1st ed. Boca Raton, FL: CRC Press, 2010.

[15] D. Longstreet. (n.d.). Function points analysis training course. [Online].
Available: www.SoftwareMetrics.Com. Accessed Aug. 3, 2016.

[16] R.G. Mathew, D. E. Middletown. (2014). Progressive function point analysis,
advanced estimation techniques for IT projects. [Online]. Available:
https://sourceforge.net/projects/functionpoints/. Accessed: Aug. 3, 2016.

[17] R. Heller. (n.d.). An introduction to function point analysis.” Q/P Management
Group, Inc. [Online]. Available: http://www.qpmg.com/fp-intro.htm. Accessed
Aug. 4, 2016.

[18] C.F. Kemerer, “Reliability of function points measurement, a field experiment,”
ACM Communications, vol. 36, no. 2, pp. 85–97, Feb. 1993.

[19] G.C. Low, and D.R. Jeffery, “Function points in the estimation and evaluation of
the software process,” IEEE Transactions on Software Engineering, vol.16, no.
64–71, Jan. 1990.

[20] P. Fraternali, M. Tisi, and A. Bongio. (2006). Automating function point analysis
with model driven development. Proceedings of CASCON 2006. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=115E733630A4E79E3F
F1D73481AECE51?doi=10.1.1.105.1517. Accessed June 2015, 2016.

[21] M. Aguiar, International Function Point Users Group Introduction to Function
Points. (2004). International Function Point User Group. [Onlin]. Available:
http://www.ifpug.org/Conference%20Proceedings/IFPUG-2004/IFPUG2004-04-
Aguiar-introduction-to-function-point-analysis.pdf. Accessed Aug. 21, 2016.

[22] R. Selby, Software Engineering, Barry W. Boehm’s Lifetime Contributions to
Software Development, Management, and Research, 1st ed. Hoboken NJ: John
Wiley and Sons, 2007.

[23] S.Pfleeger, and J. Atlee, Software Engineering Theory and Practice, 3rd ed. Upper
Saddle River, NJ: Pearson Prentice Hall, 2006.

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf%20Accessed%208%2027
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf%20Accessed%208%2027
http://www.ifpug.org/about-ifpug/Introduction/
http://www.softwaremetrics.com/
https://sourceforge.net/projects/functionpoints/
http://www.qpmg.com/fp-intro.htm
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=115E733630A4E79E3FF1D73481AECE51?doi=10.1.1.105.1517
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=115E733630A4E79E3FF1D73481AECE51?doi=10.1.1.105.1517
http://www.ifpug.org/Conference%20Proceedings/IFPUG-2004/IFPUG2004-04-Aguiar-introduction-to-function-point-analysis.pdf
http://www.ifpug.org/Conference%20Proceedings/IFPUG-2004/IFPUG2004-04-Aguiar-introduction-to-function-point-analysis.pdf

 213

[24] Rechtin, E., Systems Architecting, Creating and Building Complex Systems.
Englewood Cliffs, NJ: Prentice Hall, 1991.

[25] Department of Defense Architecture Framework (DODAF), Version 2.02, U.S.
Dept. of Defense, Washington, DC, 2010, [Online], Available:
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_v2-02_web.pdf.
Accessed Aug. 27, 2016.

[26] M. Conway (1968). How do committees invent? Datamation Magazine, April pp.
28–31. [Online]. Available:
http://www.melconway.com/Home/Committees_Paper.html . Accessed: Aug. 27,
2016.

[27] W. Vaneman and R. Jaskot , “A criteria-based framework for establishing system
of systems governance,” in Proceedings of the 7th Annual International IEEE
Systems Conference, Orlando, FL, 2013, pp. 491-496.

[28] M. W. Maier, E. Rechtin, The Art of Systems Architecting. Boca Raton, FL: CRC
Press, p.415.

[29] R. Taylor, N. Medvidovic, and E. Dashofy, Software Architectures, Foundations,
Theory, and Practice. Hoboken, NJ: John Wiley & Sons, 2010.

[30] L. Bass, P.Clements, and R. Kazman, Software Engineering in Practice, 2nd ed.
Boston, MA: Addison Wesley, 2003, p.21.

[31] OMG Unified Modeling Language (UML), version 2.5. (2015). Object
Management Group, City, Stat. [Online]. Available:
http://www.omg.org/spec/UML/2.5/PDF/, Accessed Aug. 5, 2016.

[32] M. Auguston and C. Whitcomb, “System architecture specification based on
behavior models,” in Proceedings of the 15th International Command and
Control Research and Technology Symposium (ICCRTS), Santa Monica, CA,
2010, Paper ID 053, pp. 01–20.

[33] M. Auguston, Monterey Phoenix System and Software Architecture and Workflow
Modeling Language Manual, v.2, Naval Postgraduate School, Monterey, CA,
2016. [Online]. Available:
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home. Acessed Aug. 24,
2016.

[34] M. Auguston, “Software architecture built from behavior models,” ACM
SIGSOFT, vol. 34, no. 5, pp. 1–15, Sep. 2009.

[35] E. Seidewitz, “What models mean,” IEEE Software, vol. 20, no.5, pp. 26–32, Sep.
2003.

http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_v2-02_web.pdf
http://www.melconway.com/Home/Committees_Paper.html
http://www.omg.org/spec/UML/2.5/PDF/
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home

 214

[36] B. Selic, “The pragmatics of model-driven development,” IEEE Software, vol. 20,
no.5, pp. 19–25, Sep. 2003.

[37] P. Kruchten, “Architectural blueprints - the ‘4+1’ view model of software
architecture,” IEEE Software, vol. 12, no. 6, pp. 42–50, Nov. 1995.

[38] C. Tinelli, “Propositional logic” class notes for Formal Methods in Software
Engineering, Dept. of CS, University of Iowa, Spring 2010. [Online]. Available:
http://homepage.cs.uiowa.edu/~tinelli/classes/181/Spring10/Notes/02-prop-
logic.pdf

[39] M. Collins, “Formal methods” class notes for Dependable Embedded Systems,
Dept. of Electrical and Computer Engineering, Pittsburg, PA, Spring 1998.
[Online]. Available:
https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/ Accessed: May
15, 2016.

[40] D. Jackson, Software Abstractions: Logic, Language, and Analysis, 1st ed.
Cambridge, MA: The MIT Press, 2006, p. 50.

[41] A. Hall, “Seven myths of formal methods,” IEEE Software, vol. 7, no. 5, pp. 11–
19, Sep. 1990. [Online]. Available: http://dl.acm.org/citation.cfm?id=624978.
Accessed: Apr. 20, 2016.

 [42] S. Sastry. (1998). Formal vs. semi-formal design methods and tools. [Online].
Available: http://robotics.eecs.berkeley.edu/~sastry/darpa.sec/prop/node4.html.
Accessed Aug. 27, 2016.

[43] R. Wieringa, “A survey of structured and object-oriented software, specification
methods and techniques.” ACM Computing Surveys, vol. 30, no. 4, pp. 459–527,
Dec. 1998. [Online]. Available:
http://dl.acm.org.libproxy.nps.edu/citation.cfm?id=299919&CFID=652319511&
CFTOKEN=62061440. http://dl.acm.org/citation.cfm?doid=299917.299919
Accessed May 20, 2016.

[44] J. Wing, “A specifier’s introduction to formal methods,” IEEE Computer, vol. 23,
no. 9, pp. 8–23, Sep. 1990. [Online]. Available:
http://dl.acm.org.libproxy.nps.edu/citation.cfm?id=102816&CFID=652435018&
CFTOKEN=61786300

[45] S. Easterbrook, R.R. Lutz, R. Covington, J.C. Kelly, Y. Ampo, and D. Hamilton,
“Experiences using lightweight formal methods for requirements modeling,”
IEEE Transactions on Software Engineering, vol. 24, no. 1, pp.4–14, Jan. 1998.
[Online]. Available: http://www.cs.toronto.edu/~sme/papers/1998/NASA-IVV-
97-015.pdf

http://homepage.cs.uiowa.edu/%7Etinelli/classes/181/Spring10/Notes/02-prop-logic.pdf
http://homepage.cs.uiowa.edu/%7Etinelli/classes/181/Spring10/Notes/02-prop-logic.pdf
https://users.ece.cmu.edu/%7Ekoopman/des_s99/formal_methods/
http://dl.acm.org/citation.cfm?id=624978
http://robotics.eecs.berkeley.edu/%7Esastry/darpa.sec/prop/node4.html
http://dl.acm.org.libproxy.nps.edu/citation.cfm?id=299919&CFID=652319511&CFTOKEN=62061440
http://dl.acm.org.libproxy.nps.edu/citation.cfm?id=299919&CFID=652319511&CFTOKEN=62061440
http://dl.acm.org/citation.cfm?doid=299917.299919
http://dl.acm.org.libproxy.nps.edu/citation.cfm?id=102816&CFID=652435018&CFTOKEN=61786300
http://dl.acm.org.libproxy.nps.edu/citation.cfm?id=102816&CFID=652435018&CFTOKEN=61786300
http://www.cs.toronto.edu/%7Esme/papers/1998/NASA-IVV-97-015.pdf
http://www.cs.toronto.edu/%7Esme/papers/1998/NASA-IVV-97-015.pdf

 215

[46] S. Agerholm, and P.G. Larsen, “A lightweight approach to formal methods,”
Proceedings of the International Workshop on Current Trends in Applied Formal
Method: Applied Formal Methods, pp.168–183, 1998. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=25CE43CD1B31C680D
61A66F744BB0DFE?doi=10.1.1.52.9515&rep=rep1&type=pdf

[47] N. Sharrock, and K. Giammarco, Monterey, CA, Monterey Phoenix Home, May
2016. [Online] Available:
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home;jsessionid=64EE920
DEE277FBCF7018919578C12D8Accessed Aug. 27, 2016.

[48] K. Giammarco, and M. Auguston, Monterey, CA, Monterey Phoenix Event
Grammar, May 2015 [Online]. Available:
https://wiki.nps.edu/display/MP/Event+Grammar Accessed Aug. 20, 2016.

[49] M.Auguston, B.Michael, and M.Shing, Environment behavior models for
automation of testing and assessment of system safety. Information and Software
Technology, vol. 48, no.10, pp. 971–980. Oct. 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584906000413

[50] M. Auguston, “Behavior models for software architecture,” Naval Postgraduate
School, Monterey, CA, Rep. NPS-CS-14-003, Nov. 2014. Available:
http://calhoun.nps.edu/handle/10945/43851. Accessed Aug. 27, 2016.

[51] K.Giammarco, “Formal methods for architecture model assessment in systems
engineering,” in Proceedings of the 8th Conference on Systems Engineering
Research, Hoboken, NJ, 2010, pp. 522–531. [Online]. Available:
https://calhoun.nps.edu/bitstream/handle/10945/14783/p522-
giammarco.pdf;sequence=1

[52] B. Boehm, (1984). Verifying and validating software requirements and design
specifications. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1FD28E7F832A0B5543
B60DDC5DB09DBA?doi=10.1.1.365.8494&rep=rep1&type=pdf. Accessed Aug.
27, 2016

[53] F. Brooks, The Mythical Man Month: Essays on Software Engineering
Anniversary Edition, 1st ed. Reading, MA: Addison Wesley, 1995.

[54] TutorialsPoint Simply Learning. (n.d.). [Online]. Available:
http://www.tutorialspoint.com/software_testing_dictionary/test_case.htm.Accesse
d: Aug. 27, 2016.

[55] R. Madachy, USC Center for Systems and Software Engineering (UCSSE).
COCOMO II Subject Matter Expert (SME), personal communication, May 25,
2016

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=25CE43CD1B31C680D61A66F744BB0DFE?doi=10.1.1.52.9515&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=25CE43CD1B31C680D61A66F744BB0DFE?doi=10.1.1.52.9515&rep=rep1&type=pdf
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home;jsessionid=64EE920DEE277FBCF7018919578C12D8
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home;jsessionid=64EE920DEE277FBCF7018919578C12D8
https://wiki.nps.edu/display/MP/Event+Grammar
http://www.sciencedirect.com/science/article/pii/S0950584906000413
http://calhoun.nps.edu/handle/10945/43851
http://calhoun.nps.edu/handle/10945/43851
https://calhoun.nps.edu/bitstream/handle/10945/14783/p522-giammarco.pdf;sequence=1
https://calhoun.nps.edu/bitstream/handle/10945/14783/p522-giammarco.pdf;sequence=1
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1FD28E7F832A0B5543B60DDC5DB09DBA?doi=10.1.1.365.8494&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1FD28E7F832A0B5543B60DDC5DB09DBA?doi=10.1.1.365.8494&rep=rep1&type=pdf
http://www.tutorialspoint.com/software_testing_dictionary/test_case.htm

 216

[56] Q/P Management Group Inc, “It’s Tee Time function point counting example,”
source information protected by copyright, 2010. Stoneham, MA 02180.
Complete counting example available from Q/P Management Group on request
http://www.qpmg.com/

[57] COCOMO II MP Extension. (2015). USC Center for Systems and Software
Engineering (UCSSE). [Online]. Available:
http://csse.usc.edu/tools/MP_COCOMO/ Accessed Aug. 5, 2016.

[58] E.Wolff, “Flexible software architectures,” Leanpub, Feb. 5, 2016. [Online].
Available: http://microservices-book.com/. Accessed Aug. 20, 2016.

[59] M. Farah-Stapleton, M. Auguston, R. Madachy, and K. Giammarco, “Executable
behavioral modeling of system- and software-architecture specifications to inform
resourcing decisions,” 31st International Forum on COCOMO and
Systems/Software Cost Modeling, Los Angeles, CA, Oct. 2016. (Abstract
Submitted) http://csse.usc.edu/new/events/event/31st-international-forum-on-
cocomo-and-systemssoftware-cost-modeling

[60] M. Farah-Stapleton, M. Auguston, and K. Giammarco, “Executable behavioral
modelingof system and software architecture specifications to inform resourcing
decisions,” Complex Adaptive Systems (CAS) Conference, Los Angeles, CA,
Nov. 2016. (Paper Accepted) http://complexsystems.mst.edu/

[61] M. Farah-Stapleton, M. Auguston, K. Giammarco, “Behavioral Modeling of
Software Intensive System Architectures” at the Complex Adaptive Systems
(CAS) Conference, Baltimore, MD, 2013, pp. 204-209.

[62] K. Giammarco, M. Auguston, C. Baldwin, J. Crump, and M. Farah-Stapleton,
“Controlling design complexity with the Monterey Phoenix approach,” Complex
Adaptive Systems (CAS) Conference, Philadelphia, PA, 2014, vol. 36, pp. 204–
209.

[63] M. Farah-Stapleton, Resource analysis based on system architecture behavior,
technical presentation, 30th International Forum on COCOMO and
Systems/Software Cost Modeling, November 2015. Arlington, VA
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0a
hUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http%3A%2F%2
Fcsse.usc.edu%2Fnew%2Fwp-
content%2Fuploads%2F2015%2F11%2FCOCOMO_Farah-
Stapleton__November-2015-
DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2
=y3COAQP5B4QsGwi4kvvXyg

http://www.qpmg.com/
http://csse.usc.edu/tools/MP_COCOMO/
http://microservices-book.com/
http://csse.usc.edu/new/events/event/31st-international-forum-on-cocomo-and-systemssoftware-cost-modeling
http://csse.usc.edu/new/events/event/31st-international-forum-on-cocomo-and-systemssoftware-cost-modeling
http://complexsystems.mst.edu/
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiXuuGLzoXMAhWHuBoKHTXbBTsQFggsMAI&url=http://csse.usc.edu/new/wp-content/uploads/2015/11/COCOMO_Farah-Stapleton__November-2015-DRAFT9_MFS.pptx&usg=AFQjCNEcSGfu3opnpKfOYG9LAfAfChKthA&sig2=y3COAQP5B4QsGwi4kvvXyg

 217

[64] M. Farah-Stapleton, “Behavioral modeling of software system architectures and
verification & validation,” FAA 10th Annual Verification & Validation Summit,
Sep. 2015, Atlantic City, NJ,
https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/library/
v&vsummit/v&vsummit2015/presentations/V%20and%20V%20and%20Behavori
al%20Modeling_Monica%20Farah-Stapleton.pdf

[65] M. Farah-Stapleton, and K. Giammarco, “Behavioral modeling of system
architectures,” International Council on Systems Engineering (INCOSE) System
of Systems Working Group Webinar series, Jan 2014,Arlington, VA.

[66] M. Farah-Stapleton, and K. Giammarco, “Behavioral modeling of software
intensive system of system architectures and emergence,” International Forum,
Office of the Secretary of Defense (OSD), Systems Engineering, TTCP TP4 SoS
Workstream, May 2014, Arlington, VA.

[67] M. Farah-Stapleton, “Executable behaviorial architetcture modeling to inform
resourcing,” 2015 Systems Engineering Research Forum (SERC) Doctoral
Students Forum & SERC Sponsor Research Review Poster Session,Washington,
DC, Dec 2015, http://www.sercuarc.org/research/annual-serc-research-
review/sdsf-2015/

[68] M. Farah-Stapleton, “Behavioral modeling of software intensive system
architectures using Monterey Phoenix,” CRUSER Newsletter, Dec. 2013. Naval
Postgraduate School. [Online] Available: http://my.nps.edu/web/cruser/-
/2013_12-cruser-news?inheritRedirect=true

[69] N. Fenton, and J. Bieman, Software Metrics, A Rigorous and Practical Approach
3rd ed. Boca Raton, FL: CRC, 2015.

[70] International Function Point User Group (IFPUG), Software Non-functional
Assessment Process (SNAP) Assessment Practices Manual, Release 2.1, Part 1,
Chapter 1, p. 10, Princeton Junction, NJ, 2013.

https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/library/v&vsummit/v&vsummit2015/presentations/V%20and%20V%20and%20Behavorial%20Modeling_Monica%20Farah-Stapleton.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/library/v&vsummit/v&vsummit2015/presentations/V%20and%20V%20and%20Behavorial%20Modeling_Monica%20Farah-Stapleton.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/library/v&vsummit/v&vsummit2015/presentations/V%20and%20V%20and%20Behavorial%20Modeling_Monica%20Farah-Stapleton.pdf
http://www.sercuarc.org/research/annual-serc-research-review/sdsf-2015/
http://www.sercuarc.org/research/annual-serc-research-review/sdsf-2015/
http://my.nps.edu/web/cruser/-/2013_12-cruser-news?inheritRedirect=true
http://my.nps.edu/web/cruser/-/2013_12-cruser-news?inheritRedirect=true

 218

THIS PAGE INTENTIONALLY LEFT BLANK

 219

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. overview
	A. Research goal
	B. Significance of the Problem and its Potential ImpaCT
	C. Specific Goals of This Research
	D. Proposed Advances to the state of the Art

	II. Related Work
	A. Software Cost Estimation
	B. Function Point Counting Process
	C. Architecture and Architecture Modeling
	D. The Role of Formal Methods, Semi-formal Methods and Lightweight Formal Methods in architecture modeling
	E. Monterey Phoenix (MP)
	F. Estimates for Integration Testing

	III. Methodology
	(1) Step 1: Determine takeholder questions to be answered and gather existing documentation
	(2) Step 2: Identify scope and application boundary
	(3) Step 3: Develop MP Model
	(4) Step 4: Extract Data Functions count from MP model
	(5) Step 5: Extract Transactional Function Count from MP model
	(6) Step 6: Extract Integration Test Cases and Views from MP Model
	(7) Step 7: Determine the Unadjusted Function Point (UFP) Count
	(8) Step 8: Calculate Effort Estimate
	(9) Step 9: Finalize Analysis and Provide Results to Stakeholders

	IV. Implementation of Methodology (examples)
	A. Spell checker Example
	(1) Step 1: Determine stakeholder questions to be answered and gather existing documentation
	(2) Step 2: Identify scope and application boundary
	(3) Step 3: Develop MP Model
	(4) Step 4: Extract Data Functions Count from MP model
	(5) Step 5: Extract Transactional Functions count from MP model
	(6) Step 6: Extract integration test cases and views from MP model
	(7) Step 7: Determine the Unadjusted Function Point (UFP) count
	(8) Step 8: Calculate Effort estimate
	(9) Step 9: Finalize analysis and provide results to stakeholders.

	B. Course marks Example
	(1) Step 1: Determine stakeholder questions to be answered and gather existing documentation
	(2) Step 2: Identify scope and application boundary
	(3) Step 3: Develop MP model
	(4) Step 4: Extract Data Functions count from MP model
	(5) Step 5: Extract Transactional Functions count from MP model
	(6) Step 6: Extract integration test cases and views from MP model
	(7) Step 7: Determine the Unadjusted Function Point (UFP) count
	(8) Step 8: Calculate effort estimate
	(9) Step 9: Finalize analysis and provide results to stakeholders

	C. It’s Tee Time Example
	(1) Step 1: Determine stakeholder questions to be answered and gather existing documentation
	(2) Step 2: Identify scope and application boundary
	(3) Step 3: Develop MP model
	(4) Step 4: Extract Data Functions count from MP model
	(5) Step 5: Extract Transactional Functions count from MP model
	(6) Step 6: Extract integration test cases and views from MP model
	(7) Step 7: Determine the Unadjusted Function Point (UFP) count
	(8) Step 8: Calculate effort estimate
	(9) Step 9: Finalize analysis and provide results to stakeholders

	V. Summary of Results and Findings
	A. Results and Findings
	B. Conclusions
	C. Future Work

	appendix A. MP Schema for Spell Checker
	appendix B. MP Schema for Course Marks
	appendix C. MP Schema for It’s Tee Time COAs 1–4
	A. MP Schema for Course of Action 1
	B. MP Schema for Course of Action 2
	C. MP Schema for Course of Action 3
	D. MP Schema for Course of Action 4

	List of References
	initial distribution list

